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We prove a general theorem on spectral convexity with respect to particle number for 2N degenerate
components of fermions. The number of spatial dimensions is arbitrary, and the system may be uniform or
constrained by an external potential. We assume only that the interactions are governed by an
SU�2N�-invariant two-body potential whose Fourier transform is negative definite. The convexity result
implies that the ground state is in a 2N-particle clustering phase. We discuss implications for light nuclei
as well as asymmetric nuclear matter in neutron stars.
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Interacting fermions with more than two components
exhibit a variety of low temperature phenomena. Of par-
ticular interest are phenomena which appear in different
quantum systems and therefore could be characterized as
universal. One example in three dimensions is the Efimov
effect, which predicts a geometric sequence of trimer
bound states for interactions in the limit of zero range and
infinite scattering length [1]. Once the binding energy of
the trimer is fixed it turns out that the binding energy of the
four-body system is also determined [2]. In two dimensions
a different geometric sequence has been predicted for the
binding energy of N-body clusters in the large N limit [3].

Several recent studies have investigated pairing and the
superfluid properties of three-component fermions [4].
Systems involving four-component fermions are of direct
relevance to the low-energy effective theory of protons and
neutrons. Because of antisymmetry there are only two
S-wave nucleon scattering lengths. Some general proper-
ties of this low-energy effective theory have been studied
such as pairing, the fermion sign problem, and spectral
inequalities [5,6]. Wu et al. [7] have pointed out that the
effective theory has an accidental SO�5� or Sp�4� symme-
try, and several different phases such as quintet Cooper
pairing or four-fermion quartetting could be experimen-
tally realized for different scattering lengths with ultracold
atoms in optical traps or lattices [8]. When the scattering
lengths are equal the symmetry is expanded to an SU(4)
symmetry first studied by Wigner [9].

In the following we prove a general theorem on spectral
convexity with respect to particle number for 2N degener-
ate components of fermions. The theorem holds for any
number of spatial dimensions, and the system may be
either uniform or constrained by an external potential.
We assume only that the interactions are governed by an
SU�2N�-invariant two-body potential whose Fourier trans-
form is negative definite. The main result is that if the
ground state energyE is plotted as a function of the number
of particles A, then the function E�A� is convex for even A
modulo 2N. Furthermore E�A� for odd A is bounded be-
low by the average of the two neighboring even values,
E�A� 1� and E�A� 1�. This is illustrated in Fig. 1 for both

the weak attractive and strong attractive cases. This con-
vexity pattern could be regarded as an SU�2N� general-
ization of even-odd staggering for the ground state energy
in the attractive two-component system. We should clarify
that the state labeled as A � 2NK has exactly K particles
of each component, while the state with A � 2N�K � 1�
has exactly K � 1 particles of each component. The states
shown with A in between these two have K � 1 particles
for some components and K particles for the others.

Aweaker form of this inequality was proven for A � 2N
and zero-range attractive interactions [6]. Here we extend
the proof to any A and any SU�2N�-invariant potential with
a negative-definite Fourier transform. To get a feeling for
our main result it is helpful to consider a simpler sys-
tem consisting of A particles with two-body forces in
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FIG. 1. Illustration of the convexity constraints for the ground
state energy E as a function of particle number A. The line
segments show the convexity lower bounds.
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an external potential. Qualitatively the kinetic energy of
this system and the energy of interaction with the external
potential are each proportional to A, whereas the energy of
the two-body interaction is proportional to the number of
pairs, A�A� 1�=2. Therefore if the two-body forces are
purely attractive, the second derivative of the total en-
ergy d2E=dA2 is negative. Our main result is a rigorous
theorem that establishes a relation of this sort for a sys-
tem of fermions interacting with purely attractive
SU�2N�-invariant two-body forces.

We start by considering 2N degenerate components of
nonrelativistic fermions in d spatial dimensions. We as-
sume the interactions are governed by an SU�2N�-invariant
two-body potential V� ~r� whose Fourier transform ~V� ~p� is
strictly negative. We also allow an SU�2N�-invariant ex-
ternal potential U� ~r� whose properties are not restricted.
The general form of the Hamiltonian is
 

H � �
1

2m

X
i�1;...;2N

Z
dd ~rayi �~r�

~r2ai� ~r� �
Z
dd ~rU�~r��� ~r�

�
1

2

Z
dd ~rdd ~r0 : �� ~r�V�~r� ~r0���~r0� :; (1)

where �� ~r� is the SU�2N�-invariant density,

 �� ~r� �
X

i�1;...;2N

ayi � ~r�ai�~r�: (2)

The : symbols denote the normal ordering of creation and
annihilation operators.

We consider the system on a hypercubic lattice using a
transfer matrix formalism. The term ‘‘transfer matrix’’
refers to a lattice approximation to the exponential
e�H�t, where �t equals one lattice time step. It turns out
that the lattice method we discuss is an efficient computa-
tional scheme for calculating ground state properties of
attractive fermionic systems. In many cases the method
partially or even completely eliminates the fermion sign
problem. Further details of the lattice formalism and ex-
amples of Monte Carlo calculations can be found in
[10,11].

We let ~n � � ~ns; nt� represent (d� 1)-dimensional lattice
vectors. The subscript s on ~ns denotes a d-dimensional
spatial lattice vector. We write the d-dimensional spatial
lattice unit vectors as 1̂; . . . ; d̂. Throughout our discussion
of the lattice system we use dimensionless parameters and
operators which correspond with physical values multi-
plied by the appropriate power of the spatial lattice spacing
a. We let at be the temporal lattice spacing and �t be the
ratio at=a. L denotes the spatial length of the periodic
hypercubic lattice.

We use the notation ~V�2� ~ks=L� for the Fourier trans-
form of the lattice potential V� ~ns�,

 

~V�2� ~ks=L� �
X
~ns

V� ~ns�e
i2� ~ns� ~ks=L: (3)

By assumption ~V�2� ~ks=L� is strictly negative. Let M be

the normal-ordered transfer matrix operator

 M �: exp
�
��tHfree � �t

X
~ns

U� ~ns��� ~ns�

�
�t
2

X
~ns; ~n0s

�� ~ns�V� ~ns � ~n0s��� ~n
0
s�

�
: ; (4)

where Hfree is the free lattice Hamiltonian,

 Hfree � �
1

2m

X
~ns

X
l̂s�1̂;...;d̂

X
i�1;...;2N

fayi � ~ns��ai� ~ns � l̂s�

� ai� ~ns � l̂s� � 2ai� ~ns�	g: (5)

Let V�1� ~ns� be the inverse of V� ~ns�,

 V�1� ~ns� �
1

Ld
X
~ks

e�i2� ~ns� ~ks=L

~V�2� ~ks=L�
: (6)

We can rewrite powers of M using an auxiliary field �,

 MLt �
Z
D�e�S���MLt�1��� 
 � � � 
M0���; (7)

where

 S�����
�t
2

X
nt

X
~ns; ~n0s

�� ~ns;nt�V
�1� ~ns� ~n0s��� ~n

0
s;nt�; (8)

 Mnt��� �: exp
�
��tHfree � �t

X
~ns

U� ~ns��� ~ns�

� �t
X
~ns

�� ~ns; nt��� ~ns�
�

: ; (9)

 D� �
Y
~ks

�� ~V�2� ~ks=L�	
�Lt=2

Y
~ns;nt

d�� ~ns; nt���������������
2�=�t

p : (10)

Let f�1�� ~ns�; f�2�� ~ns�; . . . be a complete set of orthonor-
mal real-valued functions of the spatial lattice sites ~ns. We
refer to these functions as orbitals. We take f�1�� ~ns� to be
strictly positive but otherwise regard the form for the
orbitals to be arbitrary. If the total number of lattice sites
is Ld then we have a total of Ld orbitals. We denote a one-
particle state with component i in the kth orbital as jf�k�i i.

Let B and C be any subsets of the orbital indices. From
these we define jBjC2N�ji as the quantum state where each
of j components fill orbitals B and each of the remaining
2N � j components fill the orbitals C. The order of the
component labels is irrelevant, and so we assume that the
first j components fill orbitals B and last 2N � j compo-
nents fill orbitals C. The total number of fermions in state
jBjC2N�ji is jjBj � �2N � j�jCj; , where jBj and jCj are
the number of elements in B and C, respectively.

We define EBjC2N�j as the energy of the lowest energy
eigenstate with nonzero inner product with jBjC2N�ji. We
let ZLt

BjC2N�j be the expectation value of MLt for jBjC2N�ji,
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 ZLt
BjC2N�j � hBjC2N�jjMLt jBjC2N�ji: (11)

In the limit of large Lt the contribution from the lowest
energy eigenstate dominates and therefore

 EBjC2N�j � � lim
Lt!1

ln�ZLt
BjC2N�j�

�tLt
: (12)

We can write ZLt
BjC2N�j using the auxiliary field �,

 ZLt
BjC2N�j �

Z
D�e�S���hBjC2N�jjMLt�1��� 
 � � �


M0���jB
jC2N�ji: (13)

At this point we define matrix elements for the one-particle
states,

 M k0;k��� � hf
�k0�
i jMLt�1��� 
 � � � 
M0���jf

�k�
i i: (14)

The component index i in Eq. (14) does not matter due to
the SU�2N� symmetry. Each entry of the matrix Mk0;k���
is real. We let MB��� be the jBj 
 jBj submatrix con-
sisting of the rows and columns in B and let MC��� be the
jCj 
 jCj submatrix for C. Each normal-ordered transfer
matrix operator Mnt��� has only single-particle interac-
tions with the auxiliary field and no direct interactions
between particles. Therefore it follows that

 ZLt
BjC2N�j �

Z
D�e�S����detMB���	

j�detMC���	
2N�j:

(15)

The form for ZLt
BjC2N�j in Eq. (15) suggests a simple upper

bound based on the Hölder inequality. We recall that the
Hölder inequality states that for any integrable functions
f�x� and g�x� and positive numbers p and q such that
1=p� 1=q � 1,

 

Z
dxjf�x�g�x�j �

�Z
dxjf�x�jp

�
1=p
�Z

dxjg�x�jq
�

1=q
:

(16)

Let n1 and n2 be integers such that 0 � 2n1 < j < 2n2 �
2N. Let us define the new positive-definite measure

 

~D� � D�e�S����detMB���	2n1�detMC���	2N�2n2 ;

(17)

so that

 ZLt
BjC2N�j �

Z
~D��detMB���	j�2n1�detMC���	2n2�j:

(18)

We now use the Hölder inequality with p��2n2�2n1�=
�j�2n1�, q � �2n2 � 2n1�=�2n2 � j�, dx! ~D�, jf�x�j !
j detMB���j

j�2n1 , and jg�x�j ! �detMC���	
2n2�j. We

conclude that jZLt
BjC2N�j j is bounded above by

 �Z
~D�j detMB���j

2n2�2n1

�
�j�2n1�=�2n2�2n1�




�Z
~D�j detMC���j2n2�2n1

�
�2n2�j�=�2n2�2n1�

� �ZLt
B2n2C2N�2n2

��j�2n1�=�2n2�2n1��ZLt
B2n1C2N�2n1

��2n2�j�=�2n2�2n1�: (19)

Taking the limit Lt ! 1 we deduce that the energies
satisfy the inequality

 EBjC2N�j � j�2n1

2n2�2n1
EB2n2C2N�2n2 �

2n2�j
2n2�2n1

EB2n1C2N�2n1 : (20)

This is a statement of convexity for EBjC2N�j as a function
of j between even end points j � 2n1 and j � 2n2. We
recall that EBjC2N�j is the energy of the state with jBj
particles of each component 1 through j and jCj particles
of each component j� 1 through 2N. If we now take
jBj � K � 1 and jCj � K, then the total particle number
is A � 2NK � j. The inequality in Eq. (20) is precisely the
convexity pattern in Fig. 1 for E�A� as a function of particle
number.

We point out that for the special caseK � 0, we can take
B to be the first orbital and C to be the empty set. In this
case MB��� is simply a number. Furthermore, since
f�1�� ~ns� is strictly positive, MB��� is also positive so
long as the temporal lattice step at is not excessively large.
Since detMB��� �MB���> 0 it is no longer necessary
that the power of detMB��� be even to ensure positivity.

Therefore E�A� is actually convex for all A between 0 and
2N and not just even A.

These convexity relations could be checked using any
number of attractive SU�2N� models in various dimen-
sions. Here we examine actual nuclear physics data to
investigate Wigner’s approximate SU(4) symmetry in light
nuclei. It is by no means clear that the interactions of
nucleons in light nuclei can be approximately described
by an attractive SU(4)-symmetric potential. Recent results
from nuclear lattice simulations hint that this might be
possible [11,12]; however, there are forces even at lowest
order in chiral effective field theory which break SU(4)
invariance in addition to being repulsive. Nevertheless, all
of the SU(4) convexity constraints are in fact satisfied for
the most stable light nuclei with up to 16 nucleons, as can
be seen in Fig. 2. The line segments drawn show all of the
convexity lower bounds.

There have been several recent studies of alpha cluster-
ing in nuclear matter [13] as well as multiparticle cluster-
ing in other systems [7,8,14]. The results presented here
give sufficient conditions for the onset of this multiparticle
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clustering phase. One can also make a definite prediction
about the j-component quasiparticle energy gaps. Starting
from a 2NK-fermion SU�2N�-symmetric state, let �j be
the extra energy required per fermion to add j fermions, all
of different components. The ground state energy for
2NK � j fermions is a convex function for even j in the
interval from j � 0 to j � 2N. Therefore it follows that
�2 � �4 � � � � � �2N . Since the ground state energy for
2NK � j fermions is also convex for j � 0; ; 1; 2, we con-
clude furthermore that �1 � �2 � �4 � � � � � �2N . We
note that for the strongly attractive case these energy
gaps are negative, and it is more natural to speak of energy
gaps per missing fermion for the corresponding
j-component quasiholes, �hj . In this case we find again
�h1 � �h2 � �h4 � � � � � �h2N .

In summary, we have derived a general result on spectral
convexity with respect to particle number for 2N degener-
ate components of fermions. We assume only that the
interactions are governed by an SU�2N�-invariant two-
body potential whose Fourier transform is negative defi-
nite. The ground state energy E as a function of the number
of particles A is convex for even A modulo 2N. Also E�A�
for odd A is bounded below by the average of the two
neighboring even values, E�A� 1� and E�A� 1�. When
applied to light nuclei for A � 16 all of the convexity
bounds for SU(4) are satisfied. These results give further
evidence that an approximate description of light nuclei
may be possible using an attractive SU(4)-symmetric po-
tential. This would be a direction worth pursuing since the
same theory could then be applied to dilute neutron-rich
matter with a finite number of protons. The residual
SU�2� 
 SU�2� symmetry for proton spins and neutron
spins would guarantee that the Monte Carlo simulation

could be done without fermion sign oscillations. The phys-
ics of this quantum system would be helpful in under-
standing the superfluid properties of dilute neutron-rich
matter in the inner crust of neutron stars.
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FIG. 2. Plot of the energy versus particle number for the most
stable light nuclei with up to 16 nucleons. The line segments
show the convexity lower bounds.
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