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We investigate the construction of improved actions by the Monte Carlo renormalization group method
in the context of SU�2� gauge theory utilizing different decimation procedures and effective actions. We
demonstrate that the basic self-consistency requirement for correct application of the Monte Carlo
renormalization group, i.e., that the decimated configurations are equilibrium configurations of the
adopted form of the effective action, can be achieved only by careful fine-tuning of the choice of
decimation prescription and/or action.
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As is well known, the lattice formulation is the only
known nonperturbative formulation of gauge theories that
gives the path integral in closed form preserving gauge
invariance and positivity of the transfer matrix (unitarity).
In fact, strictly speaking, the only known way of actually
defining ‘‘continuum’’ gauge theory nonperturbatively is
by placing the lattice theory on the critical surface of a
fixed point of infinite correlation length. Ideally, therefore,
one would like to have the action along the Wilsonian
‘‘renormalized trajectory’’ which emanates from the fixed
point and proceeds off the critical surface in only the
relevant directions. Evolved under successive renormaliza-
tion group (RG) transformations (‘‘block spinnings’’), this
‘‘perfect action’’ could therefore be used to compute di-
rectly at any scale (coarser lattices) without any contami-
nation from irrelevant directions, and hence any regular-
ization artifacts, and correspondingly greatly reduced com-
putational effort. Concrete practical implementation of this
dream, however, turns out to be rather difficult [1].

A more modest approach is based on the fact that the
RG trajectory starting at any suitable lattice action will
evolve asymptotically to the renormalized trajectory. Thus,
after successive block spinnings one should, in principle,
arrive at an ‘‘improved action’’ which allows computa-
tion on coarser lattices with suppressed discretization er-
rors. A way to implement this is through the use of the
Monte Carlo RG (MCRG), in which one performs block-
spinning (decimation) transformations on gauge field con-
figurations obtained by Monte Carlo simulations. The basic
postulate here is that the decimated configurations are
distributed according to the Boltzmann weight of an effec-
tive action that resulted from blocking to the coarser lat-
tice. One, however, does not know a priori what this action
is. Given a particular block-spinning prescription, the gen-
eral procedure that has been followed is to assume a form
of the effective action restricted to some subspace of
possible interactions [2] and then measure the couplings
in this action on the decimated configurations by one of the
known methods, the demon [3] or the ‘‘Schwinger-Dyson’’
method [4].

The purpose of this Letter is to point out that, given a
choice of a decimation prescription and a choice of an
effective action, straightforward measurement of couplings
on the decimated configurations will, in general, lead to
erroneous results. This is because the decimated configu-
rations will not be equilibrium configurations of the effec-
tive action at these couplings. Surprisingly, this basic
requirement underlying MCRG appears not to have been
enforced in its application to gauge theories. Careful fine-
tuning of the decimation prescription and/or the effective
action is required to satisfy this requirement, if it can be
satisfied at all within the chosen class of decimation pro-
cedures and effective actions.

We demonstrate the presence of the problem and how it
can be resolved in SU�2� gauge theory by exploring two
different decimation prescriptions: the Swendsen decima-
tion [5] and the ‘‘double smeared blocking’’ (DSB) deci-
mation [6]. Both prescriptions involve a free parameter c,
which is the weight of staples relative to straight paths in
the construction of the decimated lattice bond variable out
of the undecimated lattice ones. We also explore two
different effective action models that have been proposed
in the literature: the multiple-representation single pla-
quette action [7–9]
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containing the single plaquette (p � 1� 1 loop) and the
1� 2 planar loop in the fundamental representation. Here
�j denotes the character of the spin-j representation. We
use the demon method to measure couplings.
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To check the ability of the demon to measure couplings
correctly, ensembles of 20 000 configurations for the action
(1), with jN � 1, and (2), with couplings listed in the first
row of Table I, were generated on a 84 lattice. The demon is
allowed 1 sweep to set the initial energy and then 10 sweeps
for each configuration for measurements. The results,
shown in rows 2 and 3 of Table I, demonstrate that the
couplings are indeed accurately reproduced, though at a
greater computational cost for (2).

Starting now with the Wilson action at coupling� � 2:5
on a 324 lattice, we perform decimations with scale factor
of 2. Then, adopting one of the effective actions (1) or (2),
we proceed to measure the effective action couplings on
the decimated configurations by unleashing the demon. We
first consider action (1) with jN � 5=2. Figure 1 shows the
demon fundamental representation energy as a function of
sweeps for three values of c for a DSB decimation. The
prevalent feature of this plot is that there is significant
energy flow during microcanonical evolution for two of
the c values shown. There is flow stabilization (equilibra-
tion) after about 100 sweeps. This is, in fact, the behavior
observed for any general c value. Furthermore, this general
flow pattern is typical for other representations [9].

The implication of this is clear. Suppose one, working at
some chosen c value, measures the couplings for the
effective model from the decimated configurations after
one or a few demon sweeps (i.e., on the configurations as
obtained right after the decimation) and proceeds to gen-
erate thermalized configurations of the effective action at

these couplings. The decimated configurations will then
not be representative of these effective action equilibrium
configurations. As seen in Fig. 1, the decimated configu-
rations will evolve under microcanonical evolution to-
wards equilibration at a set of different values for the
couplings of the effective action. But by then these evolved
configurations no longer are the true original decimated
configurations obtained from the underlying finer lattice
and cannot be generally expected to reliably preserve the
information encoded in the original configurations.

Ideally, one would like to have for the measurement of
couplings on the decimated configurations the same situ-
ation as that seen in the test measurement of couplings on
the undecimated configurations (cf. Table I), i.e., very fast
demon thermalization indicating that the configurations are
equilibrium configurations of the action for which the
couplings are being measured. The only way out then is
to seek a c, if any, for which this is realized. In the present
case, there is one such value, c 2 �0:065; 0:067�, as seen in
Fig. 1. Furthermore, this value shows no significant flow,

TABLE I. Measurements of couplings by the demon method
before decimation.

In �1=2 � �11 � 2:2578 �1 � �12 � �0:2201

Demon �1=2 � 2:2582�4� �1 � �0:2203�3�
Demon �11 � 2:2576�3� �12 � �0:2201�1�
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FIG. 1 (color online). Demon fundamental representation en-
ergy flow for DSB decimation and action (1) at various c values.
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FIG. 2 (color online). Demon 1� 1 and 1� 2 loop energy
flow for DSB decimation at c � 0:161.
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FIG. 3 (color online). Demon 1� 1 loop energy flow for
Swendsen decimation at various c values.
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indicating very rapid thermalization also for the other rep-
resentations, in particular, the adjoint representation [9].

A very similar state of affairs is obtained when
Swendsen decimations are used in conjunction with (1),
but the resulting fine-tuning through selection of a
c-parameter value is not as sharp [11]. Overall, then,
DSB decimation is better suited for the action (1) and
can be fine-tuned so that decimated configurations are
representative of equilibrium configurations of this action.

We now turn to the action (2). Employing DSB decima-
tion, one again finds the same general picture for general
values of the parameter c, i.e., significant flow of both the
demon plaquette energy E11 and 1� 2 loop energy E12.
There are two special c values, c � 0:063�2� and c �
0:161�1�, around which there is nearly no E11 energy
flow, the second one being much more sharply defined.
There is, however, significant flow for the E12 demon
energy at both values. This is shown for c � 0:161�1� in
Fig. 2. Similar but stronger flow for E12 is observed for c �
0:063�2� as well. The only c value for which E12 is constant
is c � 0:150�2�, but E11 shows strong flow there. It appears
that there is no c value for which DSB decimations can be
fine-tuned so that the decimated configurations are repre-
sentative of equilibrium configurations of the effective
action (2).

Next we consider Swendsen decimations with effective
action (2). Figures 3 and 4 present typical evolution of
demon E11 and E12 energies for various c values. One sees

from Fig. 3 that there is approximately no E11 flow for
c � 0:19�1� and c � 1:1�1�. For the first value, however,
there is a significant E12 energy evolution, as seen in
Fig. 4. Thus, only the latter value can be used. It appears
then that Swendsen decimation at c � 1:1 results in deci-
mated configurations that are nearly equilibrium configu-
rations of (2).

For both DSB and Swendsen decimations with effective
action (2), the c dependence of demon energies is not
monotonic. For example, for DSB decimation, E11 first
goes down and then up with increasing c. Similar behavior
is seen with Swendsen decimations (though this is not
apparent in the selection of c values shown in Fig. 3).
Furthermore, the direction of the variation for E11 is not
consistent with that for E12, as can be seen from Figs. 3 and
4. This is in contrast to the case of (1), where the demon
energies vary monotonically and consistently for various
representations and over smaller energy ranges. Further-
more, this picture is stable under addition of higher repre-
sentation terms. This problem with action (2) may suggest
that it is, in fact, unstable under addition of other terms in
the same class of interactions, e.g., other loops of length
size (up to) 2 and/or other representations. To investigate
this, and, more generally, the efficacy of (1) and (2) as
medium to long range effective actions, we consider some
observables. In particular, for each of the actions (1) and
(2), we compare N � N loops measured in two ways:
(a) on the decimated configurations right after the decima-
tions and denoted Wdec

N�N and (b) on configurations gener-
ated with the effective action at couplings measured after
decimation at the optimal c value [DSB decimation for (1),
Swendsen decimation for (2)] and denoted Wgen

N�N . The
results for the difference

 RN�N �
�WN�N

Wdec
N�N

�
Wgen
N�N �W

dec
N�N

Wdec
N�N

(3)

are displayed in Table II and plotted in Fig. 5. In contrast to
action (1), action (2) shows consistent growth of the dif-
ference RN�N with increasing N. It is apparent from these
results that action (2) is failing as an accurate intermediate
to long scale effective action and must presumably be
augmented by additional terms.

In conclusion, the basic self-consistency requirement for
correct application of MCRG is that the decimated con-
figurations are already equilibrium configurations of the
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FIG. 4 (color online). Demon 1� 2 loop energy flow for
Swendsen decimation at various c values.

TABLE II. Demon-measured couplings and difference of various size Wilson loops measured on decimated versus effective-action-
generated configurations. First row: Action (1) with jN � 3 (six representations); second row: action (2).

c Couplings �W1�1=W
dec
1�1 �W2�2=W

dec
2�2 �W3�3=W

dec
3�3 �W4�4=W

dec
4�4

0.065 2.5023(7), �0:3098�12�,
0.1057(16), �0:0397�16�,
0.0145(14), �0:0029�15�

�0:0030�1� 0.1305(9) 0.106(3) �0:034�14�

1.1 3.2925(6), �0:2703�2� �0:0013�1� �0:0096�7� �0:1148�15� �0:2524�70�
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adopted form of the effective action at the couplings ob-
tained from the decimated configurations. Careful fine-
tuning of the decimation prescription and/or the effective
action form is required in order to achieve this. More
elaborate decimation prescriptions than the simple DSB
and Swendsen decimations may be defined which involve
more than one adjustable parameter and provide more fine-
tuning control. Furthermore, more involved actions, e.g.,
combination of (1) and (2), may be considered. In particu-
lar, this program is still to be carried out for the construc-
tion of a reliable truly improved SU�3� effective action
over a wide range regime, a long overdue task.
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