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Ever since the pioneering works of Bekenstein and Hawking, black hole entropy has been known to
have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quan-
tized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general
relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that the black hole
area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we
shall show that loop quantum gravity, in which area is not quantized in equidistant steps, can nevertheless
be consistent with Bekenstein’s equidistant entropy proposal in a subtle way. For that we perform a
detailed analysis of the number of microstates compatible with a given area and show consistency with the
Bekenstein framework when an oscillatory behavior in the entropy-area relation is properly interpreted.
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Black hole entropy is one of the most intriguing con-
structs of modern theoretical physics. On the one hand, it
has a correspondence with the black hole horizon area
through the laws of (classical) black hole mechanics. On
the other hand, it is assumed to have a quantum statistical
origin given that the proper identification between entropy
and area S � A=4‘2

p came only after an analysis of quan-
tum fields on a fixed background [1].

Furthermore, it has long been argued by Bekenstein that
the proportionality between entropy and area, for large,
classical black holes, can be justified from the adiabatic
invariance properties of horizon area when subject to dif-
ferent scenarios (see [2,3] for a review). Further heuristic
quantization arguments lead to the suggestion that area,
when quantized, should have a discrete, equidistant spec-
trum in the large horizon limit [3],

 A � �‘2
pn; (1)

with � a parameter and n integer. The relation between
area and entropy that one expects to encounter in the large
horizon radius is then extrapolated to the full spectrum.
This would imply that entropy too would have a discrete
spectrum, a property that might also be expected if entropy
is to be associated with (the logarithm of) the number of
microstates compatible with a given macrostate. When this
condition is imposed, then the area is expected to have an
spectrum of the form

 A � 4‘2
p ln�k�n; (2)

with k and n integers [4]. Even when appealing and physi-

cally well motivated, these arguments remain somewhat
heuristic and have no detailed microscopic quantum grav-
ity formalism to support them.

A quantum canonical description of black holes that has
offered a detailed description of the quantum horizon
degrees of freedom is given by loop quantum gravity
(LQG) [5]. This formalism allows the inclusion of several
matter couplings (including nonminimal couplings) and
black holes far from extremality, in four dimensions.
There is no restriction in the values of the matter charges.
The approach uses as a starting point isolated horizon (IH)
boundary conditions at the classical level, where the inte-
rior of the black hole is excluded from the region under
consideration. The quantum degrees of freedom are excited
when a spin network—a collection of edges with ‘‘spin’’
labels ji and vertices—pierces the horizon, creating punc-
tures that acquire, apart from the spin ji endowing it with
area, new quantum numbersmi (responsible for its intrinsic
geometry and such that �jjij � mi � jjij). The numbers
(ji, mi) can be thought of as the analogues of the total
angular momentum and projection along an axis, respec-
tively. These horizon degrees of freedom fluctuate inde-
pendently of the bulk degrees of freedom and give raise
then to the entropy of the horizon. There is also an im-
portant issue regarding this formalism. LQG possesses a
one parameter family of inequivalent representations of the
classical theory labeled by a real number �, the so called
Barbero-Immirzi (BI) parameter that is absent classically.
The strategy is to chose the value of � in such a way that,
for large black holes, the entropy corresponds to (1=4 of)
the area in Planck units [5].
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There is, however, an obvious inconsistency between
loop quantum gravity and Bekenstein’s considerations:
the area spectrum in LQG is not evenly spaced. On the
contrary, the LQG area spectrum is given by,

 A �
X
i

8��‘2
p

��������������������
ji�ji � 1�

q
; (3)

where ji are semi-integers and the sum is taken over all the
punctures i at the horizon. The spectrum (3) is not only not
equidistant, but it can be expected that the eigenvalues
accumulate for values of A large in Planck units, given
they do for the general area spectrum [6].

The inconsistency between loop quantum gravity and
Bekenstein’s heuristic arguments seemed to become less
relevant when Dreyer noted [7] that LQG might also be
consistent with the constraints imposed by asymptotically
damped quasinormal modes, as Hod had previously con-
jectured [8] within Bekenstein’s formalism. The idea is that
the asymptotic frequency of these classical modes would
correspond to the energy of horizon quanta through the
standard relation E � @!. This requirement would then
imply that, in the Bekenstein approach, black holes have an
equidistant spectrum given by

 A � 4‘2
p ln�3�n;

whereas, in the LQG approach, a minimum area gap,
associated to the quantum transition, would be given by
a0 � 4‘2

p ln�3�. [This requirement implies a particular
choice of the Barbero-Immirzi parameter � involving
ln�3�.] Even when not fully consistent (area spectra con-
tinues to be different), the appearance of a ln�3� factor
seemed to be more than just a coincidence. This initial
expectation was however diminished when it was shown
that the entropy calculation in LQG gave a different pro-
portionality factor between entropy and area that called for
a different value of the Immirzi parameter that was no
longer compatible with Hod’s considerations [9] (see also
[10]).

The purpose of this Letter is to show that there is indeed
a deep relation between entropy within the LQG formalism
and Bekenstein’s heuristic picture (supplemented by Hod’s
conjectures), even when the relation is much more subtle
than it was originally conceived. To be precise, we shall
show that a detailed analysis of the number of states
compatible with the macroscopic conditions imposed on
small, Planck size black holes within the LQG approach
yields, when appropriately interpreted, a functional form of
the entropy as function of horizon area that realizes in a
precise manner Bekenstein’s picture. The coincidence
turns out to be not only qualitative, but it also incorporates
two numbers that are important for both formalisms,
namely, ln�3� and the value �0 of the Immirzi parameter
(that recovers the Bekenstein-Hawking relation S � A=4
for large black holes).

We have computed the number of states compatible with
a horizon of area A0 using the formalism developed in [5],
that specifies which states have to be counted. We per-
formed the counting using a simple algorithm described in
detail in [11]. In the entropy computation within the micro-
canonical ensemble, one resorts to the usual prescription of
counting states whose area eigenvalues A � hÂi lie in an
interval [A0 � �A, A0 � �A], and where a total projection
constraint

P
imi � 0 is imposed such that the horizon

geometry is the quantum version of an isolated horizon
[5]. The parameter �A that fixes the interval is normally
assumed to be of the order of Planck area. In [11] it was
shown that the entropy, as function of area A has some
oscillatory behavior, whose amplitude depends on �A but
with a constant periodicity that is independent of �A. Here
we have taken further the analysis of [11] in order to
unravel the structure of these oscillations. As a first step

we have taken a rather small interval f�A � 0:005 (in
Planck units) with a point separation of 0.01, in order to
isolate the ‘‘spectrum’’ of the quantum black hole. Note
that with this choice, one is covering the full set of values
of area, without the intervals overlapping, and what one is
doing is to separate the total number of black hole states in
different ranges of area, as is done when drawing a histo-
gram. The resulting number is not then employed to de-
termine the entropy (for which a much longer �A is
employed). The results are plotted in Figs. 1 and 2. The
oscillatory behavior found in the entropy [11] as well as the
patterns shown in these figures have a period of �A0 �

2:41‘2
p, approximately.

The next step was to compute the entropy by counting
the number of states within a given interval of area, with
the choice that the size of the interval coincides with the
periodicity of the oscillations, namely, 2�A � �A0. The
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FIG. 1. The (ln of the) number of states as a function of area is
shown. The Barbero-Immirzi parameter is taken as � � 0:274

from [10,11]. The interval [A0 � f�A, A0 � f�A] is taken to be
rather small (f�A � 0:005‘2

p) so that one is effectively counting
the number of states as function of area. The area is shown in
Planck units. Note that this does not represent the entropy, given
that the interval is very small in Planck units.
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resulting entropy is plotted in Figs. 3 and 4, where more
details can be appreciated.

Let us now discuss the results. From Figs. 1 and 2 it is
clear that the spectrum of the quantum black hole has some
new and nontrivial features. Specially noteworthy is the
periodic structure that arises when looking at this rather
small scale (recall that each Planck area is covered by 100
intervals and thus correspond to 100 points in the graph).
The appearance of these ‘‘mountain like’’ structures, that
are also periodic with the same period as the oscillations
could not have been inferred from the oscillations in the
entropy function. Thus, the periodicity of the entropy-area
relation has to be associated with these new structures in
the spectrum and not with other features such as the change
in the number of punctures, a simple transition involving
creation/annihilation of edges puncturing the horizon, or
any other ‘‘naive‘‘ explanation of that sort. It is certainly
intriguing that this new length scale appears, that as we
would like to emphasize, is not related to any other scale
previously found in LQG.

Motivated by these considerations, it was natural to
explore the entropy counting with an area interval �A
given by this new scale 2�A � �A0. The results shown
in Figs. 3 and 4 are quite unexpected. The oscillations that
are found for all other values of �A disappear and instead,
one is left with a ‘‘ladder’’ in the entropy vs area graph.

The first conclusion from this graph, is that if one
interprets the (ln of the) number of states as physical
entropy then there are regions where the area changes but
the entropy remains constant. Any quantum transition
between those states would then correspond, in a precise
sense, to an adiabatic process. Furthermore, we see that
entropy (and not area) has effectively only a discrete
number of possible values it can take. This is precisely
the conclusion that one can draw from Bekenstein’s argu-
ment, namely, that entropy should be equidistant for large
black holes. Even when it can not be fully appreciated from
the figures, what we observe is that the ladder is not
completely regular for small black holes; the height of
the ladder seems to increase, as the black holes grows,

approaching a constant value for larger black holes. Thus,
what we see is an emergent picture for small black holes
within LQG that is consistent with Bekenstein’s model.
Furthermore, the manner in which the discrete equidistant
values emerge is much more subtle than just assuming an
equidistant area spectrum. From our perspective, it is a
rather nontrivial result that loop quantum gravity does
accommodate Bekenstein’s picture for quantum black
holes in such a subtle way. This is the main result of this
Letter.

In order to study the dependence of the period of both
area and entropy on the value of the Barbero-Immirzi
parameter �, we performed a series of runs of the code
with different values of the parameter �. For the area, we
found that the period is indeed linearly dependent with � as
has the following (conjectured) dependence:

 �A � 8�l2p ln�3�: (4)

The plot in Figs. 3 and 4 were drawn for the value �0 �
0:274 . . . of the parameter that reproduces the Bekenstein-
Hawking relation S � A=4 in the large area limit (see
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FIG. 3. The entropy as a function of area is shown, where the
projection constraint has been imposed, the Barbero-Immirzi
parameter is taken as � � 0:274 and �A is taken to coincide
with 1=2 of the period of the oscillations in the number of states
�A0.
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FIG. 4. Same as Fig. 3 but more detail is shown.
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FIG. 2. The same as Fig. 1 but more detail is shown.
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[10,11] for details). The fact that the periodicity in area
depends on the value of the Barbero-Immirzi parameter is
not surprising since the operator and therefore its eigen-
values depend on it.

For the entropy, we have made the same estimations and
the result is somewhat intriguing: the asymptotic size of the
steps found in the entropy do not seem to depend on the
value of the Barbero-Immirzi parameter �. That is, if the
conjectured numerical value of the area scale (4) is true,
then what we find is a universal value in which the entropy
is quantized, namely,

 �S � 2�0 ln�3�: (5)

It is certainly remarkable that, as black holes become large,
entropy seems to be quantized in integer units of a quantity
that contains both ‘‘key’’ numbers: for the heuristic
Bekenstein model, ln�3�, and for loop quantum gravity,
the value �0 of the BI parameter. The precise form of the
entropy spectrum is slightly different from Eq. (2) [where
�S � ln�3�], but one should also be aware that the relation
(2) was arrived at by means of plausibility arguments rather
than a hard core derivation. The conjectured entropy quan-
tization condition derived from (5) is the second result of
this Letter.

The main features we have found here about the quan-
tum horizon system, namely, the existence of a pattern in
the black hole spectrum with a periodicity that permeates
to the entropy-area relation, and the appearance of a new
scale associated with this period, could in principle be
‘‘generic.’’ That is, one might imagine that these features
are common to many quantum systems with a finite num-
ber of degrees of freedom. In order to rule out this possi-
bility we have repeated the analysis for a quantum horizon
in which the area spectrum is equidistant and given by
A0 � 8��‘2

p
P
iji (an operator that has been suggested

within LQG as well). This would also correspond to the
case (modulo a constant) of N decoupled harmonic oscil-
lators in the micro-canonical ensemble. Perhaps not un-
expectedly, we have seen that the black hole spectrum is in
this case equidistant with an area separation of �A0 �
8��‘2

p, which corresponds to the increase in area when
one adds a couple of punctures (the projection constraintP
imi � 0 prevents one from having an odd number of

punctures that have the minimum allowed spin, namely,
1=2). There is no nontrivial periodic patterns in the spec-

trum and the entropy has discrete jumps that are directly
associated to the fact that the area spectrum is equidistant.

Another possibility is that this behavior is a consequence
of the particular counting procedure used, and that a differ-
ent one [9] might not have the same properties. We have
performed the counting using that procedure and have
found the results to be robust: the entropy has discrete
jumps and the relations (4) and (5) continue to be valid.
Details will be published elsewhere.

We conclude then that the nontriviality of the loop
quantum gravity area spectrum (3) is what brings the
new and unexpected features to the entropy vs area relation
that we have reported in this Letter, and is therefore
responsible for black hole entropy quantization. Needless
to say, these results can only be a hint of a deeper structure
involving gravity, thermodynamics, and the quantum that
remains to be unraveled.
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