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We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from
the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches
a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast,
when the final interaction strength is comparable to the hopping, the correlations are rather well
approximated by those at thermal equilibrium. The existence of two distinct nonequilibrium regimes is
surprising given the nonintegrability of the Bose-Hubbard model. We relate this phenomenon to the role of
quasiparticle interactions in the Mott insulator.
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Recent experiments with ultracold atomic gases have
opened exciting possibilities for studying nonequilibrium
quantum dynamics of many-body systems. In particular,
the high degree of tunability allows one to rapidly change
system parameters and observe the subsequent quantum
evolution. Furthermore, thanks to the almost perfect iso-
lation of the atoms from the environment, the quantum
dynamics can remain coherent for exceedingly long times.
These advantages were used, for example, to study non-
adiabatic dynamics across the quantum phase transition
between a superfluid and a Mott insulator [1,2], as well
as the crossover of paired fermion superfluids from weak to
strong coupling [3,4].

In many cases the system parameters are changed so fast
that one may consider a sudden limit: the system is pre-
pared in the ground state of an initial Hamiltonian Hi, and
then it evolves under the influence of a different Hamilton-
ian Hf. Fundamental questions that arise concern the ap-
proach of the system to a new steady state and the nature of
this steady state. Does it retain memory of the initial state?
How is it related to the thermal equilibrium of Hf? These
questions were addressed in a number of recent works by
solving various integrable models [5–10]. In these systems
the long-time steady state was found to be nonthermal and
often carried memory of the initial state. In a fascinating
experiment, Kinoshita et al. [11] investigated the thermal-
ization of strongly interacting ultracold atoms in a nearly
integrable situation. The result, at the maximal time scale
of the experiment, was a nonthermalized steady state.

In this Letter we numerically investigate the evolution of
correlations following a sudden change of parameters in
the nonintegrable Bose-Hubbard model (BHM) [12], de-
scribing cold atomic gases in optical lattices [13,14]
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In equilibrium at integer filling, this model exhibits a
quantum phase transition at a critical value of the interac-

tion strength U=J � uc, between a superfluid (U=J < uc)
and a Mott-insulating state (U=J > uc) [12]. In a one-
dimensional system with unit filling u1D

c � 3:37 [15] and
in two dimensions u2D

c � 16:7 [16].
Our study is motivated by the experiment with ultracold

bosonic atoms in an optical lattice [2], where the lattice in-
tensity was increased suddenly, taking the system from the
superfluid phase into the Mott insulator regime. Following
the quench, a remarkable series of collapse and revivals of
the interference pattern was observed, which relaxed after
a few oscillations. What processes are responsible for the
relaxation and what is the nature of the steady state that is
reached? The general expectation for nonintegrable mod-
els like (1) is that the long-time steady state will be essen-
tially equivalent to thermal equilibrium. Surprisingly, we
find that this is not always the case. When the interaction
Uf in the final state is much larger than J the system
reaches a quasisteady state that is very different from
thermal equilibrium and retains memory of the initial state.
As Uf decreases, the nature of the steady state changes,
and in the region where Uf is comparable to J the steady
state correlations are well approximated by those at ther-
mal equilibrium (cf. Fig. 4). We relate this crossover in the
nonequilibrium behavior to the ineffectiveness of quasi-
particle interactions in the strongly interacting regime.

The revivals seen in the interference patterns in the
experiment [2] are easy to understand in the limit J ! 0.
In this limit the evolution operator is site factorizable and
given by

Q
ie
iUfni�ni�1�t=2. This implies periodic time de-

pendence, since the operator ni�ni � 1�=2 takes integer
values for any Fock state. An arbitrary initial wave func-
tion therefore revives entirely after times �n � 2�n=Uf,
where n is integer (@ is set to unity throughout). A non-
vanishing hopping matrix element J greatly complicates
the time evolution, and it leads to a relaxation of the
oscillations. In the following, we investigate this situation
using numerical methods and then interpret the results
within a tractable effective model. We implement the
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dynamic transition from the superfluid to the Mott-
insulating regime at unit filling (n � 1) by a sudden
quench of the interaction U at fixed hopping J. Thus the
initial ‘‘superfluid’’ wave function is the ground state of the
Hamiltonian Hi with U � Ui < Uc, and it evolves subject
to the HamiltonianHf withUf in the Mott insulator regime
or close to the critical point. The time evolution of the
many-body wave function is computed by exact diagonal-
ization (ED) based on Lanczos-type methods [17,18] and
by the adaptive time-dependent density matrix renormal-
ization group method (adaptive t-DMRG) [19–21]. The
ED is used to study 1D and 2D systems with up to 18 sites,
while the adaptive t-DMRG is used for 1D systems with up
to 64 sites keeping up to 200 DMRG states. For computa-
tional reasons, the Hilbert space on each site was truncated
at high occupation numbers. In ED (t-DMRG) we typically
kept up to 4 (9) bosons per site.

For a sudden quench deep into the Mott-insulating re-
gime we find that a partial revival of the wave-function
survives. This can, for example, be seen in the off-diagonal
correlation functions hby�x; t�b�0; t�i which display oscil-
lations with a period set by 2�=Uf. The oscillations relax
to a quasisteady state on a time scale �1=J. We find that
this relaxation time, as well as the value of the correlation
reached in the quasisteady state, are independent of Uf for
sufficiently large Uf. Figure 1 shows an example of the
evolution of nearest-neighbor correlations. A similar evo-
lution is observed for longer range correlations. Later we
use a simple model valid at strong coupling to show that the
relaxation time is related to the existence of a quasiparticle
band of width �J around an energy Uf. The short range
correlations oscillate with all the frequencies in this band,
and therefore they dephase after a time scale of the order of
the inverse bandwidth. Indeed, a Fourier decomposition of
the oscillations (inset of Fig. 1) reveals this band, as well as
weaker contributions from higher multiples of Uf. The
amplitude of the oscillations with frequencies of higher
multiples depends strongly on the particle distribution of
the initial state.

We turn to investigate the nature of the quasisteady state
reached by the off-diagonal correlations. The general ex-
pectation in nonintegrable systems is that the correlations
relax to thermal equilibrium. The temperature at this equi-
librium is set by the internal energy imposed on the system
by the initial conditions. Interestingly, in spite of the non-
integrability of the BHM we find two different regimes of
behavior depending mostly on the magnitude of the inter-
action strength in the final state. When Uf is very large the
correlations in the steady state bear strong memory of the
initial state. In particular, their decay with distance is much
slower than the corresponding thermal correlations and
even slower than the ground state correlations at the final
point. This behavior is shown in Fig. 2. The equilibrium
finite temperature correlations were calculated using quan-
tum Monte Carlo (QMC) simulations of the BHM (1) with
U � Uf, where the temperature was determined by match-

ing the on-site particle distribution P�n�. This yielded
T1D � 21:5J and T2D � 23:3J. A completely different
regime is realized when the final state is closer to the
superfluid transition, i.e., Uf & 6J. In that case, the corre-
lations at long times do decay with distance faster than the
ground state correlations and fit reasonably well to corre-
lations at thermal equilibrium as calculated using QMC
simulations. The good fit of the nearest-neighbor correla-
tions implies together with the matching of the particle
distribution that the temperature used for the QMC simu-
lations corresponds to the energy forced into the system by
the quench. An example of the correlations in this regime is
displayed in the left panel of Fig. 3. Contrary to the regime
of large Uf, the oscillations with period 2�=Uf are over-
damped. We note, however, that in this regime the corre-
lations do not reach a true steady state within the time scale
we are able to reliably simulate.

In contrast to the rich behavior of the off-diagonal
correlations, on-site quantities such as the particle distri-
bution P�n� reach a much simpler steady state for allUf we
considered. For large Uf, P�n� almost does not relax from
the values in the initial state, in agreement with mean-field
calculation for the case of high fillings [22]. For smallerUf

some relaxation occurs, see right panel of Fig. 3. In all
cases we were able to determine a temperature where the
QMC simulations at Uf reproduce the long-time behavior
of P�n� to good accuracy.

The essential results of the calculations in different
parameter regimes are summarized in Fig. 4. The left panel
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FIG. 1 (color online). Short time behavior of the nearest-
neighbor correlation functions for Ui � 2J and Uf � 40J.
(a) t-DMRG and ED results for 1D chains. For comparison,
the thin full line without symbols shows a relaxation for Uf �

80J. (b) ED results for 2D square lattices. In both cases there are
clear oscillations with a period 2�=Uf (dotted vertical lines for
Uf � 40J), which relax on a time scale of 1=J. Revival of the
correlations at� 1:5=J in (b) is due to finite size effects. The two
insets show the Fourier transform of the oscillations. The main
weight lies in a broad band at ! � Uf, with some smaller bands
at higher multiples of Uf.

PRL 98, 180601 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
4 MAY 2007

180601-2



presents a nonequilibrium phase diagram in the plane of
Ui=J and Uf=J. In one region (large Uf) off-diagonal
correlations reach a distinctly nonthermal steady state. In
the other region, the correlations after some time are well
described by the thermal equilibrium results. A cut along
the line Ui=J � 2 shows a clear crossover of the steady
state correlations from decaying slower than ground state

correlations at Uf to faster than ground state (as expected
of thermal correlations) at Uf � 6J.

We now argue that the different steady state regimes
may be understood qualitatively based on a simple model
[23]. One can think of the excitations of a Mott insulator as
particles and holes (pyi and hyi ) that hop on the lattice and
may be created and annihilated in pairs. From this point of
view, the initial state (a commensurate superfluid) is a
simultaneous condensate of particles and holes. Its time
dependence is determined by the effective Hamiltonian in
the Mott regime. Neglecting quasiparticle interactions, this
Hamiltonian is diagonalized by a Bogoliubov transforma-
tion, so that H0 �

P
k;�!k�

y
�k��k, where �y�k creates a

quasiparticle of the Mott insulator.
Now consider the time evolution of the momentum

distribution hnki � hb
y
kbki. In terms of the particles and

holes, a boson is given roughly by the combination byk �
pyk � h�k. Therefore, the component hnk�t�i of the mo-
mentum distribution can be constructed from quasipar-
ticles of the Mott insulator carrying momenta k and �k,
and it oscillates at a frequency !k. This fact bears on the
dynamics of spatial correlations hbyj�rbji, which are the
Fourier transform of hnki. Short range correlations receive
contributions from all k components, and therefore they
dephase at a rate comparable to the full quasiparticle
bandwidth. Long range correlations, on the other hand,
are dominated by nk at small k.

Within this picture thermalization occurs due to quasi-
particle interactions. In particular, the quasiparticle popu-
lation equilibrates because of quartic processes of the form
�yq�k�q=2��k�q=2�0. Note that quartic terms that con-
serve the quasiparticle number cannot by themselves in-
duce thermalization because they do not change the
nonequilibrium quasiparticle population forced on the sys-
tem by the initial conditions. At the level of Fermi’s golden
rule, the process mentioned above may occur only while
conserving energy. But this is impossible deep in the Mott
insulator, as long as the gap � is larger than half the
quasiparticle bandwidth W � 4zJ. We conclude that ther-
malization should be effectively suppressed in the regime
U� J, in agreement with the numerical results. Of
course, there are higher order processes that may still
induce thermalization, but apparently this occurs at time
scales much larger than the relaxation time 1=J. On the
other hand, as the final state approaches the critical point
� � 0, quasiparticle interactions become increasingly ef-
fective, which leads to rapid thermalization. The simple
picture outlined above is strictly valid only for a dilute
quasiparticle population, that is, for initial state close to the
transition. However, from the numerical results it seems to
apply more generally.

The results of the present study leave open interesting
conceptual questions. Is the nonthermal state reached a true
steady state? Is there a longer time scale associated with
reaching true equilibrium as in the prethermalized states
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FIG. 2 (color online). Decay of the correlations hbyi bi�ri with
distance r after a quench from Ui � 2J to Uf � 40J. � (ED)
and 4 (t-DMRG) show the averaged results of the quasisteady
state. The average value is determined fitting a linear function to
the results between t1 � J�1 and t2 � 20J�1. 	 show equilib-
rium QMC results at finite temperature (see text for details), and
the filled and open circles display the T � 0 correlations in the
ground state for Ui and Uf, respectively.
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FIG. 3 (color online). Left panel: decay of the correlations
hbyi bi�ri with distance r after a quench from Ui � J to Uf �

4J. � show the averaged results for times between t1 � J�1 and
t2 � 20J�1 determined as in Fig. 2. 	 show equilibrium QMC
results at finite temperature (T � 0:8J) and U � 4J, and the
filled and open circles display the T � 0 correlations in the
ground state for Ui and Uf, respectively. Right panel: particle
number distribution P�n�. The labeling is the same as in the left
panel.
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discussed in Ref. [24] or a scale free relaxation analogous
to aging phenomena?

We propose that some of these questions may be ad-
dressed by experiments with ultracold atoms on optical
lattices. The simplest observable to consider is the visibil-
ity of the interference pattern as defined in [2]. For ex-
ample, in a one-dimensional homogenous tube, following a
quench from Ui � 2J to Uf � 40J we expect, based on
t-DMRG calculation, that the visibility will relax to a value
of approximately 60%, compared to visibility of only 20%
in the ground state of the system with U � Uf.

An obstacle for the interpretation of experiments is the
existence of additional sources of relaxation, most prom-
inently the confining potential and the presence of many
parallel tubes. We performed time-dependent Gutzwiller
calculations to compare the effect of the confining poten-
tial to that of tunneling. The effect of the tunneling domi-
nates if the energy difference between neighboring sites
V0�2j� 1� is smaller than the width of the particle-hole
energy bands�6zJ, i.e., V0�2jm � 1�=�6zJ� & 1. Here, V0

is the prefactor of the trapping potential and jm is the
extension of the condensate. Substituting into this analysis
the experimental parameters of [2], it follows that the main
source of dephasing in that experiment was the confining
potential. However, it is not difficult to reach the regime
where the tunneling gives the dominant contribution.
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[5] F. Iglói and H. Rieger, Phys. Rev. Lett. 85, 3233 (2000).
[6] K. Sengupta et al., Phys. Rev. A 69, 053616 (2004).
[7] R. W. Cherng and L. S. Levitov, Phys. Rev. A 73, 043614

(2006).
[8] P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801

(2006).
[9] M. Rigol et al., Phys. Rev. Lett. 98, 050405 (2007).

[10] M. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006).
[11] T. Kinoshita et al., Nature (London) 440, 900 (2006).
[12] M. P. A. Fisher et al., Phys. Rev. B 40, 546 (1989).
[13] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).
[14] Wilhelm Zwerger, J. Opt. B: Quantum Semiclass. Opt 5,

S9 (2003).
[15] T. Kühner et al., Phys. Rev. B 61, 12 474 (2000).
[16] N. Elstner and H. Monien, Phys. Rev. B 59, 12 184 (1999).
[17] T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986).
[18] S. R. Manmana et al., AIP Conf. Proc. 789, 269 (2005).
[19] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004).
[20] A. J.Daleyet al., J.Stat. Mech. Theor. Exp. (2004) P04005.
[21] D. Gobert et al., Phys. Rev. E 71, 036102 (2005).
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FIG. 4 (color online). Left panel: nonequilibrium phase diagram in the space of initial and final interaction strengths. Two regions are
found, one where the steady state is distinctly nonthermal and the other where correlations do appear to thermalize within the
numerical error bounds. � and 
 mark points in the respective regions where numerical results for a one-dimensional system were
obtained. The full line follows Ui � Uf. Small arrows mark the equilibrium critical value for an infinite one-dimensional system.
Right panel: difference between the correlation hbyi bi�ri at steady state and its nominal value for the ground state of the final
Hamiltonian. Data are shown for r � 1 (
) and r � 2 (�) along the cut Ui=J � 2. The crossover from slower than ground state decay
(� > 0) to faster than ground state is seen at Uf � 6J.
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