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We show that the current method of determining superfluidity in optical lattices based on a visibly sharp
bosonic momentum distribution n�k� can be misleading, for even a normal Bose gas can have a similarly
sharp n�k�. We show that superfluidity in a homogeneous system can be detected from the so-called
visibility (v) of n�k�—that vmust be 1 within O�N�2=3�, where N is the number of bosons. We also show
that the T � 0 visibility of trapped lattice bosons is far higher than what is obtained in some current
experiments, suggesting strong temperature effects and that these states can be normal. These normal
states allow one to explore the physics in the quantum critical region.
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There has been strong interest in using cold atoms in
optical lattices to simulate strongly correlated many-body
systems so as to shed light on many long standing problems
in condensed matter physics. The interest began a few
years ago with experiments on the superfluid-insulator
transition of bosonic atoms in optical lattices [1], and has
grown rapidly since the achievement of fermion pair con-
densation near a Feshbach resonance [2]. One class of very
important problems, including high Tc superconductivity,
is understanding how superfluid order (bosonic or fermi-
onic) develops, and how the superfluid transforms into
other correlated many-body states as the interaction pa-
rameters are varied. To achieve this goal, it is necessary to
reach quantum degeneracy in a lattice, and to identify the
presence of superfluidity.

At present, the method commonly used for identifying
superfluidity of bosons is through the ‘‘sharpness’’ of the
diffraction spots in their momentum distribution n�k�
[1,3–6]. Despite its popularity, there has been no effort
to characterize this sharpness precisely. As far as we can
tell, a peak is considered ‘‘sharp’’ if its width is visually
much smaller than the separation of peaks. To be sure, a
macroscopic bosonic superfluid is characterized by a
�-function peak in n�k� (of order N where N is the number
of particles). Unfortunately, the presence of such a �
function is hard to discover due to finite experimental
resolution. Instead, one relies on the estimate of sharpness
mentioned above, which is consistent with but not a proof
of superfluid correlation, as we explain below.

The purpose of this Letter is to point out a number of
facts crucial for identifying superfluid order for bosons in
optical lattices. We show that (i) even a normal Bose gas
above Tc can have a diffraction pattern as sharp as those in
current experiments. Identifying superfluid order from the
sharpness of n�k� as practiced today is therefore unreli-
able. (ii) For homogeneous systems, the presence of super-
fluid order implies that the so-called ‘‘visibility’’ (v) must
be 1 within O�N�2=3�. We also present (iii) the visibility at
T � 0 as a function of lattice parameters for the ‘‘wedding

cake’’ structure of harmonically confined lattice bosons. In
this case, v deviates from 1 when the superfluid regions are
sufficiently small. In current experiments, this typically
occurs after more than one Mott layer has developed.
Because of the high sensitivity of v to superfluid order,
this visibility curve is a good calibration of temperature
effects in the system. These results have strong implica-
tions for the interpretation of many current experiments,
discussed at the end.

In our discussions, we shall use the identification
adopted in all current experiments [1,3–6] that the ob-
served diffraction pattern is related to the momentum
distribution of the system through a ballistic expansion of
the cloud [see Eq. (2)]. While this has not been proven
rigorously, it is consistent with the fact that the confine-
ment energy of a Wannier state in the tight binding limit is
much larger than the interaction energy [7].

(A) Normal Bose gas in a lattice.—Consider an ideal
Bose gas with N bosons in an optical lattice with volume
�. The Hamiltonian is H �

P
ihi, i � x; y; z, hi �

��@2=2m�@2
i � V0sin2��xi=d�, V0 > 0. When V0 is suffi-

ciently large, only the lowest band (with energies Ek �

�2t
P
i�x;y;z coskid and Bloch functions �k�x�) is ther-

mally occupied. Above the Bose condensation temperature
Tc, the chemical potential � is determined by N=� �

��1P0
kfB�Ek�, where fB�x� � �e�x���=kBT � 1��1, andP

k
0 is a sum over the first Brillouin zone. At Tc,� reaches

the bottom of the band E0. The momentum distribution for
T > Tc is n�q� �

P
k
0fB�Ek�j ~�k�q�j2, where ~�k�q� is the

Fourier transform of �k�x�. Experimentally, one measures
the column distribution, N?�q?� �

R
dqzn�q�, where q �

�q?; qz�. Since ~�k�q� is nonzero only when q � k�G,
where G is a reciprocal lattice vector, and since Ek �

Ek�G, we have N?�q?� �
R
dqzfB�Eq�j ~�q�G�q�j2, with

q�G in the first Brillouin zone. For a narrow band,
j ~�q�G�q�j2 is a Gaussian centered at q � 0 decaying on
the scale 2�=d. Hence N?�q?� is composed of peaks
centered at reciprocal lattice vectors G, with the shape of
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the peak given entirely by the variation of fB�Eq�G�

around G and an overall envelope given by j ~�q�G�q�j2.
In Fig. 1(a) we showN?�q?� for a lattice with one boson

per site (N=� � d�3) and V0 � 15ER at a temperature
T � 1:1Tc, where ER � @

2�2=�2md2� is a ‘‘recoil’’ en-
ergy. We have found numerically that in this system
kBTc � 0:45B, where B � 12t is the bandwidth of the
lowest band, thus kBT < B. As we shall see, this leads to
sharp peaks distributed on a 2D square lattice with spacing
2�=d. Figure 1(b) shows that the peaks are visibly sharp,
with a full width at half maximum ��q�T � 0:1�2�=d�.
This demonstrates that diffraction spots in n�q� with width
much less than a reciprocal lattice spacing is not proof of
Bose condensation.

(B) Condition for quantum degeneracy.—The results in
section (A) can be understood by considering the condition
for quantum degeneracy. When kBT < B, the most ther-
mally occupied states are near the bottom of the energy
band, for which we can use the approximate spectrum
Ek � �6t� @

2k2=2m�, where m� is the effective mass
defined as (m� � @

2=�2td2�). The ‘‘lattice’’ thermal wave-
length �T � h=

���������������������
2�m�kBT

p
is reduced from the free space

value ��o�T by
�������������
m=m�

p
. The condition for Bose condensation

for one boson per site, which is also the condition for
quantum degeneracy (�T 	 d), becomes kBTc � 0:55B.
The difference from the numerical result (0:45B) is due
to the effective mass approximation. The width of the spot
is in general proportional to ��1

T .
Note that the change of thermal wavelength means that

Tc in a lattice is reduced by a factor of m=m�. This poses a
severe challenge to reaching quantum degeneracy in the
deep lattice limit. For V0=ER � 10, 15, 30, we have
m=m� � 0:25, 0.09, 0.007, respectively. Without lattice,
for gases with 106 bosons in harmonic traps, Tc is typically
10�6 K and the lowest temperature attainable today is
10�9 K. For deep lattices with m=m� 	 10�3, one can
barely reach quantum degeneracy even at the lowest tem-
perature attainable today [8].

(C) Visibility and Bose condensation.—The visibility,
originally introduced to study short range coherence [3],
is defined as

 v �
NA � NB
NA � NB

; (1)

where NA � N?�Gx̂�, NB � N?�Gn̂�, G � 2�=d, Gx̂ is a
reciprocal lattice vector; Gn̂ is Gx̂ rotated by 45
 around
the ẑ axis and is not a reciprocal lattice vector. In the
superfluid phase, N?�Gx̂� 	 N while N?�Gn̂� 	 N1=3

(see later discussions), so we have v � 1. The visibility
of an ideal Bose gas in a lattice with V0 � 15ER and one
boson per site is shown in Fig. 1(c). The visibility is 100%
at T < Tc but decreases sharply above Tc. It is interesting
to note that despite its sharp drop at Tc, v decays slowly,
remaining at 0.1 at T � 10Tc.

For interacting bosons in a sufficiently deep lattice, the
bosons are confined to the lowest band, described by the
Bose Hubbard model H � �t

P
hR;R0i�a

y
RaR0 � H:c:� �

U
2

P
RnR�nR � 1�, where hR;R0i means nearest neighbors,

ayR creates a boson in the Wannier state wR�r� �
L�3=2P

ke
�ik�R�k�r� located at site R, L3 is the number

of lattice sites, and nR � ayRaR. The hopping integral t and
the interaction parameter U are calculated from the eigen-
states of hi and the s-wave scattering length. Since the
Fourier transform of wR�r� is of the form wR�q� �
e�iq�Rw�q�, the momentum distribution is

 n�q� � jw�q�j2
X

R;R0
hayRaR0 ieiq��R�R0�: (2)

In a homogeneous superfluid, hayRaR0 i is essentially given
by j�j2 for R � R0, � � haRi [9]. Denoting the number
of condensed bosons as N0 � L3j�j2 [10], we have

 n�q� � ��N � N0� � j�j
2f�q�jw�q�j2; (3)

where f�q� � j
P

Re
iq�Rj2. For a narrow band, w�q� is well

approximated by jw�q�j2 �
Q
i�x;y;zW �qi�, W �k� �

e�k
2=�2

=
����������
��2
p

, �	 1=d. For a cubic lattice, we have
f�q� �

Q
iF�qi�, F�k� � �sin�Lkd=2�= sin�kd=2�2, which

peaks sharply at reciprocal lattice vectors G with a width
	�=Ld. Since the product W �qx�W �qy� has the same
value at Gx̂ and Gn̂ and since F�0�F�2�=d� � L4, it is
simple to show from Eqs. (1) and (3) that

 v �
j�j2

j�j2 � �N � N0�y
; y �

2
R
W �qz�dqzR

W �qz�F�qz�dqzL4
:

(4)

Simple integration shows that y � �d�=
����
�
p
��1=L5�. Since

j�j2 � N0=L3, we then have in the superfluid phase, v �
1�O�1=N2=3� [11]. In order for the visibility to deviate
from 1 by a nonzero but small amount, v � 1� �, we need
N0=N 	 1=��L2� 	 1=��N2=3�. Hence, even if the conden-
sate fraction is very small, as along as it is larger than
1=��N2=3�, the visibility is essentially 1 (1> v> 1� � to
be precise). For example, a visibility of 0.95 for a system
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FIG. 1 (color online). (a) N?�q� for an ideal Bose gas with one
particle per site in an optical lattice at T � 1:1Tc for V0 � 15ER.
A and B refer to those vectors defined in Eq. (1). (b) N?�q� along
the qx axis. (c) v vs T=Tc for this ideal Bose gas.
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with 106 bosons with about a few bosons per site means
N0=N � 10�3.

(D) Visibility of lattice bosons in a harmonic trap.—
Many recent experiments investigating quantum phase
transitions of a lattice Bose gas or Bose-Fermi mixtures
have measured the visibility of these systems in harmonic
traps as a function of lattice height V0 [3–5,12]. Except for
a single case in Ref. [3] (V0 � 5ER) which finds v � 1 in
the regime where a majority of bosons should be superfluid
in the ground state, the data reported in Refs. [3–5,12]
shows that v � 0:8 in a similar regime. If there was no
harmonic trap, a visibility v � 0:8 means the lattice Bose
gas is normal, as shown in section (C). On the other hand,
in a harmonic potential V�r�, it is well known that the sys-
tem develops alternating layers of superfluid and Mott
phases (the so-called wedding cake structure). When a suf-
ficiently large number of bosons is converted from the sup-
erfluid phase to the Mott phase, the visibility will begin to
drop. In addition, finite temperature or heating effects can
also destroy phase coherence and reduce visibility.

To understand the general behavior of the visibility, let
us consider a region in the harmonic trap (say, around r)
where the lattice Bose gas turns into a Mott phase as the
lattice depth V0 (and hence the ratioU=t) increases. Within
the local density approximation (LDA), we can treat this
region as a bulk system for which the physical process is
represented as a path in the phase diagram of a homoge-
nous lattice gas shown schematically in Fig. 2(a), which
plots the transition temperature Tc as a function of U=t. At
U=t � 0, Tc is given by the quantum degeneracy condition
discussed in section (B). It drops to zero at the quantum
critical point �U=t��. The shaded line in Fig. 2(a) is the
crossover from the quantum critical region (a normal phase
with no clear sign of a gap) to the Mott region (a normal
phase with an interaction gap).

Since experiments are performed at finite temperature,
any physical trajectory connecting the superfluid phase to

the Mott phase must pass through the quantum critical
region. Typically, as V0 increases, the system heats up
due to a variety of reasons: spontaneous emission, tiny
vibrations of the apparatus, etc. The physical processes
may therefore look like trajectories I or II shown in
Fig. 2(a). The states (A) and (B) are in the superfluid phase.
The final states (C) and (E) are in the Mott regime. The
state (D) is in the normal regime. The proximity to a
quantum phase transition can be measured by the length
of the trajectory passing through the quantum critical
region. For example, process I is close to the quantum
phase transition, whereas II is not. In homogeneous sys-
tems, for both I and II one starts off with v � 1 and a sharp
momentum distribution n�k� in the superfluid region. For I,
v drops sharply and n�k� becomes blurry quickly across
the transition point �U=t��. For II, v drops slowly as the
system leaves the superfluid phase, and n�k� remains sharp
in the quantum critical regime close to Tc.

The proximity to a quantum phase transition can also be
estimated by comparing the measured visibility to the T �
0 visibility calculated using standard mean field method
[13] and LDA. To be concrete, we focus on the system in
Ref. [12] because it has the most detailed analysis of data
among current experiments on lattice bosons [14]. The
physics illustrated here, however, should be applicable to
boson-fermion mixtures [4,5]. We begin by calculating the
order parameter haRi � �R and density hnRi of an infinite
lattice as a function of chemical potential � and the
interaction ratio t=U for a homogeneous system. The phase
boundary between superfluid and Mott phases is a se-
quence of ‘‘Mott lobes,’’ as shown in the inset of
Fig. 2(b). The regions within different lobes are Mott
phases with different (integer) number of bosons per site.
In a trap V�r�, both �R and hnRi are position dependent,
since � becomes (within LDA) ��r� � �� V�r�. In this
way, we obtain the density profiles in Fig. 2(b). (We
mention that our density profiles differ from those in
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FIG. 2 (color online). (a) Schematic phase diagram for a homogenous lattice Bose gas [13]. The superfluid, (quantum critical)
normal, and Mott insulator phases are labeled SF, N, and M, respectively. The solid dark gray (blue) line is the critical temperature for
the system. The shaded area is a crossover. I and II represent different physical processes. (b) Density versus radial distance for lattice
bosons in a harmonic trap for conditions in Ref. [14] at V0=ER � 12 (dotted black curve), 14 (dot-dashed red curve), 16 (dashed green
curve), and 20 (solid brown curve). Inset: phase diagram for a homogeneous system. The region outside the lobes is superfluid. Vertical
lines represent values taken by ��r� for the corresponding V0. (c) T � 0 visibility versus V0. For V0 � 14:7ER, where the second Mott
shell begins to appear, the system has a large superfluid core, which yields v � 1. The upper solid red (lower, solid blue) curve is the
visibility when the superfluids separated by the Mott shell are in (out of) phase. The circles are experimental data from Ref. [12]. The
dashed line is a calculation including short range coherence assuming all superfluid regions have become Mott phases. The dotted line
is the superfluid fraction at T � 0.
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Ref. [12]; see [15]. These differences, however, will not
affect our points below.) We then calculate v from Eqs. (1)
and (2) with hayRaR0 i � hnRi�R;R0 ���R�R0 �1� �R;R0 �.
If R and R0 are in disconnected superfluid regions, the
product ��R�R0 depends on the relative phase �� between
these regions.

In Fig. 2(c), we have plotted our result for v as a function
of V0 for the system in Ref. [12]. The different curves
correspond to different ways of treating the relative phase
�� between different disconnected superfluid regions. One
sees that the T � 0 visibility differs strongly from the
experimental data (shown as circles in the figure). This
large difference, however, is not due to the differences in
our wedding cake structures. This is because both struc-
tures contain a superfluid core below V0 � 14:7ER (where
the second Mott shell begins to develop) that is so large that
v must be 1 as long as the superfluid is not destroyed. The
disagreement with experiments implies that all superfluid
regions that should exist at T � 0 have turned normal
(hence the much weaker visibility), which can only occur
if the temperature is above Tc in these regions [i.e., the
system that should be in the superfluid state (B) in Fig. 2(a)
at T � 0 is found to be in state (D) above Tc]. The physical
process is therefore quite far from the quantum critical
trajectory [16].

In order to account for the visibility deep in the Mott
regime, the authors of Ref. [12] considered short range
correlations in a perturbative manner and found good
agreement with their data, provided one makes the assump-
tion that all the superfluid regions are converted into the
Mott phase. We have repeated this procedure with our
wedding cake structure [15] and have obtained similar
agreement [dashed line in Fig. 2(c)]. The assumption that
leads to this agreement, which eliminates all contributions
from superfluid to visibility, is consistent with the picture
that all superfluid regions have gone normal due to tem-
perature effects. We would like to point out that our mean
field calculations do not include these short range coher-
ences, but that their inclusion would only raise the visibil-
ity curves in Fig. 2(c) to even larger values. Finally, it is
instructive to look at the condensate fraction N0=N at T �
0 as a function of V0, where N0 �

P
Rj�Rj

2. We see from
Fig. 2(c) that at T � 0 a visibility as high as 0.8 (which
occurs when V0 > 14:7ER) represents a condensate frac-
tion N0=N 	 0:05.

(E) Implications for recent experiments.—Just as in
Ref. [12], Refs. [4,5] also show visibility v	 0:8 for lattice
heights where the system should be superfluid at T � 0.
The physical processes in Refs. [4,5] are therefore quite far
from being a quantum phase transition (QPT). (To show
that a physical trajectory is close to a QPT, it is necessary to
demonstrate that the quantum critical region traversed in
the process is very narrow.) Moreover, the decrease of
visibility of the bosons when fermions are added suggests

that fermions may be increasing the temperature of bosons.
Our discussions in sections (A) and (B) also show that the
recent claim of observation of superfluid correlation of
fermions in an optical lattice [6] based on the sharpness
of n�k� is not conclusive. The claim would have been
established if the bosonic molecules after the sweep were
found to have visibility v � 1.

Our study indicates that the problem of heating is prev-
alent in current experiments. We hope our findings will
stimulate serious efforts to determine the temperature of
lattice gases and more rigorous ways to achieve quantum
degeneracy in lattices. This work is supported by NSF
Grants No. DMR-0426149 and No. PHY-0555576.
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