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We study the electric potential of a charge placed in a strong magnetic field B� B0 ’ 4:4� 1013 G, as
modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its
Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a
magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the
Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the
Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic
ground-state energy of a hydrogenlike atom is found. In the limit B � 1, the modified potential becomes
the Dirac � function plus a regular background. With this potential the ground-state energy is finite—the
best pronounced effect of the vacuum polarization.
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There is now compelling evidence that many compact
astronomical objects (soft gamma-ray repeaters, anoma-
lous x-ray pulsars, and some radio pulsars) identified with
neutron stars have surface magnetic fields as high as
�1014–1015 G [1]. More strong magnetic fields (B�
1016–1017 G) are predicted to exist at the surface of cos-
mological gamma-ray bursters if they are rotation-powered
neutron stars similar to radio pulsars [2]. All these fields,
however, are much smaller than the maximum value in-
herent in quantum electrodynamics [3].

Vacuum in an external magnetic field B behaves as an
anisotropic dielectric medium with spatial and frequency
dispersion, (e.g., [4]). These properties may become im-
portant, provided that the field strength achieves the char-
acteristic value B0 � m2=e ’ 4:4� 1013 G, wherem is the
electron mass and e is its charge. [Henceforth, we set @ �
c � 1 and refer to the Heaviside-Lorentz system of units.]
Although much work has been devoted to the study of
electromagnetic wave propagation in the magnetized vac-
uum, problems of electro- and magnetostatics in this me-
dium did not attract sufficient attention, save Refs. [5,6],
where corrections to the Coulomb law were found when
these are small: for B=B0 � 1 in [5], or at large distances
from the source for 1� B=B0 � 3���1 in [6] (� �
e2=4� � 1=137).

In this Letter, we find that for sufficiently large b �
B=B0 � 1 the electric field produced by a pointlike charge
at rest may be significantly modified by the vacuum polar-
ization, the modification being determined by the charac-
teristic factor �b. The modified Coulomb potential in the
close vicinity of its charge, characterized by the Larmour
length LB � �eB	

�1=2 � �1=m
���
b
p
	, goes steeper than the

standard one, following a Yukawa law, whereas it obeys a
long-range ‘‘anisotropic Coulomb law’’ far from the
source, at distances characterized by the electron
Compton length m�1, m�1 � LB. (Details of the corre-
sponding derivations can be found in Ref. [7].) The short-
range part of the modified potential tends to the Dirac �

function in the limit b! 1. The modification of the
Coulomb law should affect, first of all, the field of an
atomic nucleus, placed in a magnetic field. We determine
the corresponding correction to the lowest energy level of a
hydrogenlike atom. Unlike the famous result of Ref. [8],
referred to in many speculations on behavior of matter on
the surface of strongly magnetized neutron stars (e.g., the
review [9] and references therein), we find that the
(vacuum-polarization-corrected) ground-state energy re-
mains finite in the limit of infinite magnetic field.

Let the constant and homogeneous magnetic field B be
directed along axis 3 in the frame where the pointlike
charge q is at rest in the origin x � fx1; x2; x3g � 0, and
no external electric field exists. By using the tensor decom-
position of the photon propagator over eigenmodes in a
magnetic field [10,11] it is straightforward to show [7] that
electrostatic potential A0 produced by this charge has the
form

 A0�x	 �
q

�2�	3
Z exp��ik 
 x	d3k

k2 � �2�k
2
3; k

2
?	
; (1)

while its vector potential is zero, A1;2;3�x	 � 0. The static
charge gives rise to electric field only, as it might be
expected. Here �2 is one (out of three) eigenvalue(s) of
the polarization operator ��

�: ��
�[�a	� � �a[

�a	
� , a � 1,

2, 3, �, � � 0, 1, 2, 3. The eigenvectors [�a	� are 4-
potentials of the eigenmodes. The eigenvalues depend on
two combinations of the photon momentum components
k2

3 � k
2
0 and k2

? � k2
1 � k

2
2 taken at zero frequency k0 � 0.

Equation (1) is approximation independent and axial sym-

metric: A0�x	 � A0�jx3j; x?	, x? �
����������������
x2

1 � x
2
2

q
.

Equation (1) indicates that only mode-2 photons mediate
electrostatic interaction. This fact may be better under-
stood, if we examine electric and magnetic fields intrinsic
to the virtual (off-shell) photons of this mode, obtained
from its 4-vector potential [�2	� � � k3 0 0 k0 	�. It
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may be seen from explicit representation for these fields
[11] that in the limit k0 � 0 the magnetic field of mode-2
photon disappears, while its electric field is collinear with
k; i.e., it becomes a purely longitudinal virtual photon. Vir-
tual photons of other modes, in the static case, are carriers
of stationary magnetic fields. For instance, mode-1 photons
are responsible for the field produced by a constant current,
flowing parallel to the external magnetic field.

In the asymptotic regime of high magnetic field, eB�
k2

3 and B� m2=e � B0, with the accuracy to terms that
only grow with B as its logarithm or slower, the eigenvalue

�2, calculated within the one-loop approximation in
[10,11], acquires the form [6,12]

 �2�k
2
3; k

2
?	 � �

2�bm2

�
exp

�
�

k2
?

2m2b

�
T
�
k2

3

4m2

�
; (2)

 T�y	 � y
Z 1

0

�1� �2	d�

1� y�1� �2	
: (3)

Note the properties T�y! 0	 ’ 2y=3, T�1	 � 1.
The deviation of the potential (1) from the standard

Coulomb potential AC0 �x	 � q=�4�
�����������������
x2
? � x

2
3

q
	 is

 �A0�x	 � AC0 �x	 � A0�x	 �
q

8�2

Z 1
0
J0�k?x?	dk

2
?

Z 1
�1

�
exp��ik3x3	

k2
? � k

2
3

�
exp��ik3x3	

k2
? � k

2
3 � �2�k

2
3; k

2
?	

�
dk3: (4)

Here J0 is the Bessel function of order zero. This integral
defines �A0�x	 as a finite function of the coordinates in the
origin, unlike A0 and AC0 . As the integration variable k3 in
(4) approaches the large values �

������
eB
p

, one has �2 � k2
3.

Hence, no essential contribution comes from the integra-
tion over the region jk3j *

������
eB
p

, wherein Eq. (2) is not
valid. The expression to be substituted for it there is even
smaller (since it does not contain the large factor b) [13].
The leading terms of the expansion of (1) near the origin

x3 � x? � 0 are

 A0�x	 ’
q

4�

�
1

jxj
� 2mC

�
; C �

2�
qm

�A0�0	> 0; (5)

where C is a constant depending on the magnetic field.
More exactly, the singular behavior near the origin will

be presented if we note that it is provided by the integration
over large k3 (and k?) in (1), where we may set
T�k2

3=4m2	 � T�1	 � 1 and perform k3-integration in
Eq. (1) by calculating residues. Then

 A0�x	 ’
~A0�~x	
LB

�
q

4�LB

Z 1
0
J0�~k?~x?	~k?

exp
�j~x3j
�������������������������������������������������������
~k2
? � �2�=�	 exp��~k2

?=2	
q

��������������������������������������������������������
~k2
? � �2�=�	 exp��~k2

?=2	
q d~k?: (6)

Here ~A0�~x	 is a dimensionless, external-field-independent
function of the arguments ~x3 � x3=LB, ~x? � x?=LB, and
the integration variables ~k3 � k3LB, ~k? � k?LB are used.
We refer to Eq. (6) as establishing a scaling regime that
describes the potential measured in inverse Larmour units
as a universal function of coordinates measured in Larmour
units. It holds for jxj � �2m	�1.

The simple representation (6) can be further simplified if
x3 or x? are large in the Larmour scale: j~x3j�1, or j~x?j�
1 (but remain small in the Compton scale). In this case the
integration in (6) is restricted to the domain ~k2

? � 1, where
the exponential exp��~k2

?=2	 should be taken as unity.
Then (6) is reduced to the isotropic Yukawa law

 A0�x	 ’
q

4�LB

exp���2�=�	1=2
�����������������
~x2
? � ~x2

3

q
	�����������������

~x2
? � ~x2

3

q : (7)

This can be established by tracing (6) back to (1) with

 � �2�1; 0	 �
2�

�L2
B

�
2�b
�

m2 � M2 (8)

substituted for ��2�k2
3; k

2
?	 in the denominator. Here M is

the ‘‘effective photon mass’’ noted in Ref. [15]. The
Yukawa law (7) establishes the short-range character of
the static electromagnetic forces in the Larmour scale. We

stress, however, that the genuine photon mass understood
as its rest energy is always strictly equal to zero as a
consequence of the gauge invariance reflected in the
approximation-independent relation �a�0; 0	 � 0 re-
spected by (2). Hence, the potential, produced by a static
charge, should be long range for sufficiently large dis-
tances. This is the case, indeed. One can see by inspecting
the curves of Fig. 1, computed using Eq. (1) for x? � 0,
that the scaling regime (6), or (7), does fail for sufficiently
large values of x3: �0:1=�2m	 � 50LB for b � 106,
�0:2=�2m	 � 33LB for b � 105, �0:3=�2m	 � 15LB for
b � 104—the larger, the smaller the field [for these dis-
tances Eqs. (6) and (7) are already the same]. Starting
with these values, the potential curves approach their en-
velope, that can be fitted as A0�x3; 0	 ’ �q=4�	1:41=�x3 �
1:04=2m	, unlike the scaling curves (6) and (7) that tend
fast to zero. It is in this place that the abruptly falling—-
short-range—potential turns into a slowly decreasing—
along the envelope curve—long-range potential. An
analogous change from the short- to long-range behavior
is observed in Fig. 2, where the electron energy in the field
(1) is plotted against the transverse distance from the
charge at x3 � 0. At small distances, all the dashed curves
in Figs. 1 and 2 approach the thick solid Coulomb curve in
accord with (5).
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The scaling regime depends on the fact that the eigen-
value (2) grows linearly with the magnetic field. If this
linearity, supposedly, retains in higher-loop approxima-
tions, one may conjecture that the calculations of the latter
may be reduced to finding �n corrections to the mass (8).
Potential (6) implies the suppression of electrostatic force
by the linearly growing term in the denominator of (1) at
large distances in the Larmour scale from the charge, but
not close to the charge, where it has the same singularity as
the Coulomb law.

For larger distances x3, x?, not small in the Compton
scale, one may expect that only integration over small k3,
k? is important in (1) (for a more thorough analysis see
[7]). In this limit (2) behaves as �2�k

2
3; 0	 ’ �

�b
3� k

2
3. With

this substitution the integral in (1) is

 A0�x3; x?	 ’
1

4�
q�����������������������

�x0?	
2 � x2

3

q ; (9)

where x0? � �x?, � � �1� �b=3�	1=2, x0? > x?. For
small �b=3�, Eq. (9) coincides with the result of [6].

Equation (9) is an ‘‘anisotropic Coulomb law’’, accord-
ing to which the attraction force decreases with distance

from the source along the transverse direction faster than
along the magnetic field, but remains long range. In accord
with (9), the curves A0�x3; 0	 in Fig. 1 all approach at large
distances jx3j the Coulomb law q=�4�jx3j	, whereas each
curve A0�0; x?	 in Fig. 2 reaches at large x? the asymptote
A0�0; x?	 � q=�4�x0?	 � AC0 �0; x?	=�, different for each
field; i.e., the potential is anisotropic. Again, the same as
for short distances considered above, we face—now an-
isotropic—suppression of the Coulomb force due to the
linearly growing term in (2). The equipotential surface is
an ellipsoid stretched along the magnetic field. The electric
field of the charge E � �rA0�x3; x?	 is a vector with the
components �q=4�	�x2

3 � �
2x2
?	
�3=2�x3; �2x?	. It is not

directed towards the charge, but makes an angle 	 with
the radius-vector r, cos	��x2

3��
2x2
?	�x

2
3��

4x2
?	
�1=2�

�x2
3�x

2
?	
�1=2. In the limit of infinite magnetic field, � �

1, the electric field of the point charge is directed normally
to the axis x3.

The regime (9) corresponds to the approximation, where
only quadratic terms in powers of the photon momentum
are kept in �2. Within this scope the dielectric permeability
of the vacuum is independent of the frequency, and the re-
fractive index depends only upon the angle in the space
[16].

Consider an impact of the Coulomb potential modifica-
tion on the nonrelativistic hydrogenlike atom ground-state
energy. The wave function ��x3	 is subject to the one-
dimensional Schrödinger equation [8] with respect to x3,
valid in the region jx3j> LB. The transverse coordinate x?
in the argument of the potential is replaced by the momen-
tum of the transverse center-of-mass motion [17] and
should be set equal to zero for the ground state.

For the fields in the range 1� b� 2�=�� 103 the
correction (4) to the Coulomb potential may be treated as
perturbation. Keeping only the first-order term in �2 in (4)
we may derive the magnetic analog of the Uehling poten-
tial [14]. At x? � 0 it is

 �A0�x3; 0	 ’
q�bm

8�2

Z �=2

0
e��2mjx3j= cos		cos2	d	: (10)

This correction is of the order of �b, i.e., is much larger
than �. Equation (10) implies C ’ �b=16. Calculating its
matrix element with Loudon’s [8] wave functions we ob-
tain the positive correction (q � Ze)

 

2Z2�3bm
3�

ln
b

4�2 � Z2b
�

lnb
8:454

� 1
�
� 0:356 eV (11)

to the negative Loudon-Elliott ground-state energy

 E0 � �2Z2�2mln2

���
b
p

2�
: (12)

Equation (11) may be used for Z � 6. For instance, for
Z � 1 and b � 200 it makes about 100 eV, while E0 �
�2:5 keV. Although the proton has a finite size R�
10�13 cm, the Coulomb 1=jx3j part of the potential (5)
remains the same within the definition range of the
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FIG. 2. The same as in Fig. 1 in function of transverse coor-
dinate x? at x3 � 0. The asymptotes at large x? values,
�1=2mx0?, are presented by solid lines.

 

0 0.2 0.4 0.6 0.8 1 1.2
x3 ([ 2 m) –1 ]

-5

-4

-3

-2

-1

0

–
eA

0
[2

α
Z

m
]

FIG. 1. Electron potential energy �eA0 in the field of a point
charge q � Ze plotted in units 2�Zm � Z� 7:46 keV as a
function of longitudinal coordinate x3 in Compton half-lengths
�2m	�1 at x? � 0 for four values of magnetic field (from left to
right): b � 106, 105, 104, 103, b � B=B0, B0 � 4:4� 1013 G
(dashed lines). Solid line is the fit �1:4=�2mx3 � 1:04	. Bold
line is the Coulomb law �1=2mx3.
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Schrödinger equation, since R< LB within the range of b
considered in this paragraph (moreover, R� LB). On the
contrary, the vacuum-polarization part does depend on R,
like it does in the no-magnetic-field case [18]. However,
the finite-size correction to (11) is ��R=LB	2 to be ne-
glected within the present scope of accuracy.

The singularity 1=jx3j of the Coulomb potential in the
origin is known to lead to the energy spectrum unbounded
from below [8]: as this singularity is cut off at the Larmour
length, LB � �m

���
b
p
	�1, the ground-state energy (12) tends

to �1 with the growth of the magnetic field, when LB !
0. This feature is cured by the vacuum polarization. As
b! 1 the region in Fig. 1 between the potential curve and
the abscissa below the point �eV � �1:4� 2�Zm,
where it is crossed by the envelope, becomes infinitely
deep and thin. The area S � �4�=q	

R �x3
LB
A0�x3; 0	dx3 cal-

culated with expression (5), where �x3 is found from the
equation A0� �x3; 0	 � V, has a finite limit if and only if C
grows proportionally to 1=LB. This is the case: when
calculated following Eq. (6), C ’ 0:9594

���������������
�b=2�

p
. Thus,

the dominating behavior of the modified Coulomb poten-
tial in the origin becomes the � function. Combining it with
the fit for the envelope we come to the limiting form of the
electron potential energy at b � 1 [here jx3j does not
exceed a few �2m	�1]

 � eA0�x3; 0	 � �2�Z
�
S��x3	 �

1:4m
2mjx3j � 1:04

�
; (13)

where S � ln�
�������������
�=2�

p
=0:96	 � 1� 0:96

�������������
2�=�

p
� 1:79.

A more rigorous calculation done with the use of Eq. (6)
for the short-range part of the potential instead of (5)
results in S ’ �Ei
��2�=�	1=2� ’ 2:18; Ei is the expo-
nential integral. With the 1=jxj singularity replaced by the
� function, the ground energy level is certainly finite.
Applying the formula for the ground energy
�2m�

RaB
LB
A0�x3; 0	dx3�

2 valid in a shallow well potential
[19], with Eq. (13) integrated up to the point x3 � 2:6=2m,
where the fitted curve crosses the Coulomb law, and the
latter taken as the integrand for larger x3 up to the Bohr
radius aB � �m�	�1, we estimate the finite limiting value
for the ground energy as

 Elim � �2mZ2�273:8 � �Z2 � 4 keV: (14)

The Loudon-Elliott energy (12) would overrun the limiting
energy (14) already for the magnetic field as large as b �
6600, when yet R� LB. The ground level reaches 92% of
its limiting value for b � 5� 104. After the magnetic field
reaches the value b � 1:5� 105, when R and LB equalize,
the Coulomb potential is cut off at the proton size, x3 � R.
Setting LB � R in (12) we would get the minimum value
for the Loudon-Elliott energy (Z � 1) to be �5:6 keV,
which is essentially lower than (14).

The significant modification of the Coulomb potential of
an electric charge by the vacuum polarization in external
constant magnetic field B� B0, shown to eliminate the

unboundedness from below of the nonrelativistic hydrogen
spectrum, is apt of having more implementation as far as
other situations where electrostatic fields are important are
concerned, e.g., properties of matter on the surfaces of
extremely magnetized neutron stars.
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