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We report on experiments performed to probe quantum coherence in a system consisting of an rf-
SQUID in which the Josephson junction is replaced by a small loop containing two junctions in parallel.
At temperatures of the order of 10 mK the system may develop three potential energy wells, which modify
the usual two well energy profile and thereby verify the qubit manipulation strategy. The appearance of the
third potential well can be interpreted as evidence of a butterfly catastrophe, namely, a catastrophe
expected for a system described by four control parameters and one state variable.
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Since the pioneering work by Leggett and Garg [1], the
observation of quantum behavior of macroscopic super-
conducting variables has renewed the attention toward
Josephson systems and superconducting quantum interfer-
ence devices (SQUIDs). The response and dynamics of
systems consisting of single [2] or coupled [3] Josephson
junctions and interferometers [4] have been proposed and
investigated in order to understand the nature of funda-
mental states and transitions between them. The acquired
knowledge has been exploited in the growing field of
quantum information processing with solid state devices
[5]. In this framework, we have engineered a system that
requires no external microwave pumping in order to pro-
vide evidence of quantum coherence.

We study the properties of the system whose electrical
analogue is sketched in Fig. 1(a): it consists in essence of a
double-SQUID; namely, a superconducting loop with in-
ductance L interrupted by a small dc-SQUID with induc-
tance l. When the effect of the small inductance l can be
neglected the inner dc-SQUID can be viewed as a single
Josephson junction with tunable critical current, and the
potential energy of the system has the form of the corru-
gated parabola of an rf-SQUID. This potential can be tilted
by the applied flux �x [Fig. 1(b)] and manipulated through
the flux �c, which can lower the barrier [Fig. 1(c)]. The
states in the right and left well of Figs. 1(b) and 1(c)
correspond to clockwise and counterclockwise current po-
larization states of the large loop.

When the barrier of the potential well is very low and the
temperature of the system is well below the expected
quantum to classical crossover temperature [2] one can
expect coherent oscillations between these two polariza-
tion states. These states are read out either by a hysteretic
dc-SQUID, coupled through a superconducting trans-

former, or by a larger Josephson junction [6], inserted
into the double-SQUID loop [Fig. 1(a)].

In Fig. 2(a) we show a typical total flux vs control flux
�x characteristics, taken at 10 mK on our double SQUID
with a fixed value of the control flux �c. We see that the
characteristics are essentially those of an rf-SQUID [7];
however, tuning the height of the potential barrier, which
can be achieved just by varying the flux �c, will result in a
reduction or enlargement of the hysteresis cycle. Record-
ing the characteristics of Fig. 2(a) for different values of
the flux �c we will obtain the separatrix for the potential
energy configurations in the (�x, �x)-plane as shown in
Fig. 2(b). We found the plane of Fig. 2(b) to be a physically
relevant and versatile tool to characterize the device be-

 

FIG. 1. (a) The double-SQUID system whose configurations
and stability are investigated in the Letter. The switching be-
tween flux states, induced by the fluxes �x and �c, can be
recorded through the readout junction or through the readout
SQUID. Examples of the control of the system potential through
�x and �c are given in (b) and (c), respectively: the first
modifies the symmetry while the second tunes the height of
the barrier.
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havior. In particular, the tip of the map is the most impor-
tant region for our investigations because here the height of
the potential barrier between the two wells attains very low
values, and, thus, where we can expect evidence of quan-
tum coherence from the occupation statistics histograms.

In Fig. 3 we show the experimental data (open circles)
corresponding to the map sketched in Fig. 2(b). Figure 3(a)
shows that the tip is bending on the left; the detail of the
very top, within the dotted square, is enlarged in Fig. 3(b).

The shape of the flux characteristics for �c � �0=2 can
be fitted and provides information on the physical parame-
ters of the inner dc-SQUID junctions. The data plotted in
Fig. 3(a) indicate an asymmetry of about 4% between the
critical currents of the junctions forming the inner junction
loop. We attribute this asymmetry to flux trapped in the
junctions because improving the shielding of the samples
results in more symmetrical flux characteristics (estimated
asymmetry of about 0.3%) and the backbending of
Fig. 3(a) disappears. However, instead of the backbending
we now observe ‘‘two-horns’’ on the tip shown in Fig. 3(c).
Unfortunately, both patterns in Fig. 3(a) and the more
symmetrical one in Fig. 3(c) are disturbing factors for
our quantum coherence experiments because they indicate
a modified shape of the potential in the lowest barrier
region: in order to understand this phenomenon we put
the observations into the following context.

The inner dc-SQUID contributes additional complexity
to the potential energy function when the inductance l of

the inner loop of Fig. 1(a) cannot be neglected. With the
phase differences between the quantum mechanical wave
functions in the inner loop denoted by ’1 and ’2, it can be
shown that the system can be described by the single
variable ’ � �’1 � ’2�=2 in the limit l� L. The ap-
proximate potential energy function reads [8]

 U� 1
2EL�’�’x�

2�EScos’�ED sin’� 1
2Elcos2’; (1)

where �0 � 2:07� 10�15 Wb is the magnetic flux quan-
tum, ’x � 2��x=�0 and there are four energy scales. The
first, EL � �2

0=�4�
2L�, is related to the magnetic energy

stored in the main loop, while ES � ES0 cos���c=�0�,
ED � ED0 sin���c=�0�, and El � El0sin2���c=�0� rep-
resent, respectively, the harmonic modulations (through
the applied flux �c) of ES0 � �IC1 � IC2��0=�2�� (maxi-
mum Josephson energy of the two junctions of the internal
loop), ED0 � �IC1 � IC2��0=�2�� (Josephson energy due
to the difference of the critical currents) and El0 � �IC1 �
IC2�

2l=4 (energy stored in the inductor l). Thus, Eq. (1)
describes the potential energy of the system by one vari-

 

FIG. 3. Experimental �x-�c phase diagram obtained for two
different asymmetry parameters determining the value of the co-
efficient to the third order power coefficient in Eq. (3). (a) Dif-
ference between the critical currents is 4%. (b) Enlargement of
the tip region. Continuous line is the theoretical expression while
the circles are the experimental points. (c) Butterfly catastrophe
observed by enlarging the tip of the map when the coefficient to
the third order in Eq. (3) is close to zero (asymmetry of 0.3%).

 

FIG. 2. (a) An experimental flux characteristic of the double-
SQUID system for a fixed value of �c where we also report for
every region of the curve the potential configuration. (b) A
diagram of the potential configuration in the (�x, �c)-plane,
obtained by plotting the positions at which the two minima
disappear. For clarity, we superimpose the characteristics shown
in (a) taken for various values of �c.
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able, and four characteristic energies. Starting from Eqs. 1
and 2 of Ref. [8] (with no noise current terms) but setting
different Josephson currents (IC1 and IC2) for the junctions
of the inner loop one derives the following equation (analo-
gous to Eq. 12 of Ref. [8])

  tt�� t�cos’sin ��Iccos sin’��
2

�l

�
 ��

�c

�0

�
;

where �IC � �IC1 � IC2�=2IC, IC � �IC1 � IC2�=2 and
�l � �2�lIC�=�0. From this equation, following a linear
expansion for the static limit performed for small �l and
assuming a small �IC, a single equation for the variable ’
(analogous of Eq. 16 of Ref. [8]) and related potential
energy (1) can be derived.

Given a particular experimental configuration, the four
energies introduced above can be modulated by varying the
two fluxes coupled to the system (�x and �c). The differ-
ence between the Josephson currents of the junctions of the
inner loop, related to the third term in Eq. (1), can be due to
either fabrication parameter uncertainties or flux trapping
in the junctions or it can be imposed deliberately through
the design of the chips. The stable and metastable states of
the variable � � ��0=2��’ can be displayed versus the
control fluxes �x and �c as shown in Fig. 4(a). The surface
shown in the figure is a known feature of Thom’s catastro-
phe theory [9–11] and, in the jargon of this theory, it is

called the behavior surface of the system. The surface is
analytically determined by the fix points of the system
described by Eq. (1); i.e., the zero point of the first deriva-
tive of Eq. (1):

 ’x � ’�
ES
EL

sin’�
ED
EL

cos’�
El
EL

sin’ cos’: (2)

The fold in the surface of Fig. 4(a) maps discontinuous
transitions between multiple states that occur due to a
change in a variable. The critical point at which a catas-
trophe occurs (i.e., a discontinuous transition from one
point to another on a folded surface) corresponds to a point
where a minimum and a maximum coincide. These values
can be determined from the two conditions @U=@’ � 0
and @2U=@’2 � 0, which yield the critical value of’x. For
fixed values of other parameters contributing to ES, ED, El,
EL we thereby obtain plots of the critical points in the
�x-�c plane, as shown in Figs. 4(b)– 4(d).

Equation (1) can be readily transformed into the poly-
nomial form analyzed by Thom [9–11] for the butterfly
catastrophe by approximating the energy expression with a
sixth order polynomial Taylor expansion around the point
’ � � (corresponding to � � �0=2); removing the con-
stant term and retaining only the leading power in the terms
having the same coefficients we get
 

U�
�’���6

60
El�

�’���4

24
�4El�ES��

�’���3

6
ED

�
�’���2

2
�EL�El�ES��’�ED�’x���: (3)

Thus, four physically relevant energies of our system
directly determine the coefficients of the 6th order poly-
nomial of the butterfly catastrophe. The phase diagrams
shown in figures from 4(b) to 4(d) are related to three
different sets of energy scales relevant for our experiment.
The approximate potential in Eq. (3) (dashed lines) fits
very well the full potential in Eq. (1) (solid lines). We note
that when the energy stored in the inductor l can be
neglected, and when there is no Josephson energy associ-
ated with the difference of the currents of the internal loop
(the junctions are identical), the form (3) becomes a fourth
order polynomial of the cusp catastrophe accounting for
the behavior of the rf-SQUID. Equation (3) very clearly
displays the relevance of the inductance l, which deter-
mines the coefficient to the term of highest order, as well as
the sign of the fourth order term.

The important parameters that we get out of the fit are
ES0=EL, ED0=EL and El0=EL:. From these quantities it is
possible to determine all the system parameters IC1, IC2,
and l once the inductance L is known (in our device we
have a nominal inductance L � 85 pH). In Figs. 3(a) and
3(b) we show the theoretical curves fitting the data that
were obtained with ES0=EL � 4:9, ED0=EL � 0:196, and
El0=EL: � 0:54, corresponding to l � 7:7 pH, �IC1 �
IC2� � 19:0 �A, and asymmetry �IC1 � IC2�=�IC1 �
IC2� � ED0=ES0 � 0:04. These parameters are fully con-

 

FIG. 4 (color online). (a) Characteristic surface described by
possible phase solutions of a double-SQUID system. Shown sur-
face is obtained by varying the two parameters that can be
changed during measurements; this kind of surface represents
a typical topological feature of systems exhibiting catastrophes.
(b)–(d) Examples of parameter locations of catastrophes and
sketch of the corresponding configurations of the potential
[Eq. (3)]. (b) Parameter values identical to (a); (c) and (d) are
projections of the surface for different parameter sets of the
butterfly catastrophe. Solid and dashed curves are obtained by
using, respectively, the full potential or a 6th order Taylor
expansion.
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sistent with the asymmetry value derived from the flux
modulations, meaning that the potential model of Eq. (1)
provides a realistic description of our system.

In Fig. 3(c) we further show that the experimental points
fit the shape of the butterfly catastrophe that we obtain
from Eq. (2) for small junctions asymmetry [corresponding
to a coefficient of the third order power close to zero in
Eq. (3)]. The theoretical curve is the typical butterfly
catastrophe and is obtained for ES0=EL � 5:2, ED0=EL �
0:0156, and El0=EL � 0:61, corresponding to l � 7:7 pH,
�IC1 � IC2� � 20:1 �A, and �IC1 � IC2�=�IC1 � IC2� �
ED0=ES0 � 0:003. The asymmetry is consistent with the
estimate obtained from the flux modulations. It is worth
noting that no evidence of either the tip bending shown in
Figs. 3(a) and 3(b) or of the butterfly catastrophe shown in
Fig. 3(b) was recorded at 4.2 K; the data shown in these
figures were recorded at 10 mK. In terms of potential wells
[see Fig. 4(d)] the butterfly implies that an extra potential
well exists between the right and left wells: when the
control parameters lead the system in the ‘‘pocket’’ of
the butterfly [see Fig. 4(d)] we can clearly see that the
potential develops this third and central well in which the
current is circulating only in the small loop of our double-
SQUID system.

From the coefficients of Eq. (3) it is straightforward to
anticipate the behavior that we observed experimentally.
The coefficient of the fourth order term in that equation can
be conveniently modulated experimentally via the normal-
ized flux �c=�0. A particular feature of the experiments is
that this coefficient is always negative, which is an impor-
tant component for the butterfly catastrophe surface. Also,
the coefficient regulating the shape of the tip is the third
order term, namely ED: when this term is close to zero we
find experimentally the symmetrical projection of the but-
terfly singularity, just as predicted by the topological model
[9–11]. An interesting analysis related to the butterfly
catastrophe was reported for a three level optical system
[12].

Because of the presence of the three-well structure in the
sample considered in this Letter, performing quantum
coherence experiments according to our initial idea is a
nontrivial task. However, simulation shows that, with a
slight modification of the parameter values (for instance,
a reduction of the critical current by about 15%), the third
well disappears in the operational region and the overall
modification of the potential profile is reduced to a small
perturbation. Thus, an adequate design of the SQUID
system should allow recovering the original measurement
scheme.

In conclusion, our characterization of a double-SQUID
potential has shown that small deviations from ideal con-
ditions have profound impacts on the shape of the potential
energy. We have shown that the modification of the poten-
tial can be explained in terms of the general nonlinear
system analysis introduced by Thom: namely, catastrophe
theory. The theoretical description of our experimental

results obtained according to this model is accurate and
consistent with independent parameter evaluations. We
believe that quantum coherence experiments based on the
Josephson flux variable can benefit from the analysis and
the characterization of the potential that we have presented
herein.
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