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The weak localization correction to the conductivity of quantum wires with linear Rashba-Dresselhaus
spin-orbit coupling is derived analytically as function of wire width W. The spin relaxation rate is found to
decrease as W becomes smaller than the spin-precession length LSO. As a result, the sign of the
conductivity correction switches to weak localization, positive magnetoconductivity for wire widths
smaller than LSO. A relaxation rate due to the cubic Dresselhaus coupling � with a corresponding length
scale L� remains, however, even in narrow wires W � LSO. At low temperature, an antilocalization peak
with negative magnetoconductivity is therefore recovered when the dephasing length exceeds L�.
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Quantum interference of electrons in low-dimensional,
disordered conductors results in corrections to the electri-
cal conductivity ��. This weak localization (WL) effect is
a very sensitive tool to study dephasing and symmetry
breaking mechanisms in conductors [1]. The entanglement
of spin and charge by spin-orbit interaction (SOI) reverses
the effect to weak antilocalization (WAL), enhancing the
conductivity. Because electron momenta are randomized
by disorder, SOI results in randomization of their spin,
Dyakonov-Perel spin relaxation (DPSR), with a rate of
1=�s [2]. Since this mechanism breaks down in single
channel wires whose width W is of the order of the
Fermi wavelength �F [3,4], one may ask if spin relaxation
is suppressed already in wider wires. As DPSR is caused by
elastic momentum scattering, one could expect that it is
suppressed in ballistic wires, when the elastic mean free
path le exceeds W. In this Letter, we show, for any combi-
nation of linear Rashba and Dresselhaus SOI, that 1=�s is
strongly reduced in even wider wires: as soon as wire width
W is smaller than the bulk spin-precession length LSO. This
explains the reduction of spin relaxation in quantum wires,
recently observed with optical [5] and WL measurements
[6]. LSO can be as large as several �m and exceed both le
and �F. In clean, ballistic 2D electron systems (2DES),
LSO is the length on which the electron spin precesses a full
cycle. This length scale is not changed as wire width W is
reduced below LSO: the SOI itself remains unchanged, as
long as there are many transverse channels. Therefore,
while the spin of conduction electrons relaxes only on
the enhanced length scale Ls�W� �

���������
D�s
p

(D � v2
F�=2

diffusion constant, vF, Fermi velocity), the spin can pre-
cess coherently as it moves along the wire on the length
scale LSO. Thus, this dimensional reduction of spin relaxa-
tion rate 1=�s�W� can be very useful for the realization of
spintronic devices, which rely on coherent spin evolution
[7,8].

Hikami, Larkin, and Nagaoka [9] derived WAL for
conductors with impurities of heavy elements. As conduc-
tion electrons scatter from them, the SOI randomizes their
spin. The resulting spin relaxation suppresses interference

of time reversed paths in spin triplet configurations, while
singlet interference remains unaffected. The remaining
singlet interference reduces the return probability, resulting
in WAL. Weak magnetic fields suppress the singlet con-
tributions, yielding negative magnetoconductivity. If the
host lattice provides SOI, the conductivity has to be calcu-
lated in the basis of eigenstates of the Hamiltonian with
SOI,

 H0 � �@
2=2me�k2 � @�� (1)

(me, effective electron mass), �T � ��x;�y�, are preces-
sion frequencies of the electron spin around the x- and
y-axis. � is a vector, with components �i, i � x, y, the
Pauli matrices. The breaking of inversion symmetry causes
a SOI, given by [10]

 � D � �1��êxkx � êyky�=@� ��êxkxk
2
y � êykyk

2
x�=@:

(2)

�1 � �hk2
zi, the linear Dresselhaus parameter, measures

the strength of the term linear in momenta kx, ky in the
plane of the 2DES. When hk2

zi � 1=a2 � k2
F (a, thickness

of the 2DES, kF, Fermi wave number), that term exceeds
the cubic Dresselhaus terms with coupling �. Asymmetric
confinement of the 2DES yields the Rashba term (�2,
Rashba parameter) [11],

 � R � �2�êxky � êykx�=@: (3)

The quantum correction to the conductivity �� arises from
the fact that the quantum return probability to a given point
x0 after a time t, P�t�, differs from the classical return
probability, due to quantum interference. Therefore, �� is
proportional to a time integral over the quantum mechani-
cal return probability P�t� � �dF�t�n�x0; t� (d, dimension
of diffusion, n, electron density). For uncorrelated
disorder potential, V�x�, with hVi � 0 and hV�x�V�x0�i �
��x� x0�=2�	� [	 � m=�2�@2�, average density of states
per spin channel, �, elastic mean free time], we can per-
form the disorder average. Going to momentum (Q) and
frequency (!) representation, and summing up ladder dia-
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grams to take into account the diffusive motion, yields the
quantum correction to the static conductivity [9],

 �� � �
2e2

h
@D
Vol:

X
Q

X
�;
�	

C�

�;!�0�Q�; (4)

where the sum is over momenta Q, and spin indices �,
 �
	 of the time reversed paths, respectively, and the
Cooperon propagator Ĉ is neglecting the Zeeman coupling
for �F�
 1 (�F, Fermi energy), given by

 Ĉ�Q��1 �
@

�
�
Z d�

�

@=�
1� i �

@
v�@Q� 2eA� 2meâS�

:

(5)

The integral is over all angles of velocity v on the Fermi
surface (�, total angle; e, electron charge; A, vector
potential). S is the sum of the spin vectors of time reversed
paths: S � �� � � 0�=2, so that Ĉ is a 4 by 4 matrix in spin
space. â is the 2 by 2 matrix

 â �
1

@

��1 � �k2
y ��2

�2 �1 � �k
2
x

� �
: (6)

In 2D, the angular integral is continuous from 0 to 2�,
yielding to lowest order in �Q� 2eA� 2mâS�,

 Ĉ�Q� �
@

D�@Q� 2eA� 2eAS�
2 �H�

: (7)

The effective vector potential due to spin-orbit interaction,
AS � me�̂S=2, (�̂ � hâi) couples to total spin S. The
cubic Dresselhaus coupling reduces the effect of the linear
one to �1 �me��F=2. Furthermore, it gives rise to the
spin relaxation term in Eq. (7),

 H� � D
m2
e�

2
F�

2

@
2 �S2

x � S2
y�: (8)

In the representation of singlet, jS � 0;m � 0i �
�j�ij�i � j�ij�i�=

���
2
p

and triplet states jS � 1;
m � 0;	i � �j�ij�i � j�ij�i�=

���
2
p

, jS � 1; m � 1i �
j�ij�i, and jS � 1; m � �1i, the 4 by 4 matrix Ĉ decou-
ples into a singlet and triplet sector. Thus, introducing in
Eq. (4), 1 �

P
S;mjS;mihS;mj, the quantum conductivity

becomes a sum of singlet and triplet terms,
 

�� � �2
e2

h
@D
Vol:

X
Q

�
�

@

D�@Q� 2eA�2

�
X

m�0;	1

hS � 1; mjĈ�Q�jS � 1; mi
�
: (9)

It remains to diagonalize Ĉ. For general SOI and magnetic
fields, this results in cumbersome expressions. Exact ana-
lytical solutions are known in special cases [12,13]. In 2D
one can treat the magnetic field nonperturbatively, in the
basis of Landau bands [9]. In wires with widths smaller
than cyclotron length kFl

2
B (lB, the magnetic length, de-

fined by Bl2B � @=e), the Landau basis is not suitable.
However, one can define a rate with which the magnetic

field breaks time reversal invariance, 1=�B, since in a
magnetic field, the electrons acquire a magnetic phase.
Averaging over all closed paths, this rate cuts off the
divergence in Eq. (9), arising at small wave vectors Q2 <
1=D�B. In 2D systems, �B is the time an electron diffuses
along a path enclosing one magnetic flux quantum, D�B �
l2B. In wires of finite width W, the area which an electron
can enclose in a time �B is W

����������
D�B
p

. Thus, 1=�B �
De2W2B2=�3@2�. For arbitrary magnetic field, one gets
1=�B � D�2e�2B2hy2i=@2 with the expectation value of
the square of the transverse position hy2i. This yields
1=�B � D=l2B�1� 1=�1�W2=3l2B��. Thus, we can diago-
nalize the Cooperon propagator as given by Eq. (7) without
magnetic field and add 1=�B together with dephasing rate
1=�’ to the denumerator of Ĉ�Q�, when calculating the
conductivity correction, Eq. (9). In 2D, the Cooperon
propagator can be diagonalized for pure Rashba coupling
�1 � 0, � � 0, or pure Dresselhaus coupling �2 � 0
[12,13]. Keeping only Rashba coupling �2, diagonaliza-
tion yields the triplet Cooperon Eigenvalues,
 

ET0=�D@� � Q2 �Q2
SO;

ET	=�D@� � Q2 �
3

2
Q2

SO 	
1

2
Q2

SO

������������������������
1� 16

Q2

Q2
SO

s
;

(10)

where QSO � 2me�2=@2. If we use the approximation,

 ET	=�D@�  �Q	QSO�
2 �Q2

SO=2; (11)

which is plotted for comparison with the exact dispersion,
Eq. (10) in Fig. 1, we can integrate analytically over the 2D
momenta Q and get the 2D quantum correction

 �� � �
1

2�
ln

H’

H’ �Hs
�

1

�
ln
H’ �Hs=2

H�
; (12)

in units of e2=h. All parameters are rescaled to dimensions
of magnetic fields: H’ � @=�4eD�’�, H� � @=�4eD��,
and spin relaxation field Hs � @=�4eD�Sxx� [13]. The 2D
spin relaxation rate of one spin component is for pure
Rashba coupling, 1=�Sxx � 1=�s � 2k2

F�
2
2�=@

2 [12,13],
and is related to spin-orbit gap �SO � @vFQSO, by 1=�s �
��SO=@�2�=d. We see that the largest contribution to the
weak localization correction in Eq. (9) does come from the
smallest Cooperon eigenvalues. Therefore, the minima of
the eigenvalues, seen in Fig. 1, do cut off the logarithmic

 

FIG. 1. Dispersion of triplet Cooperon modes in 2D in units of
@DQ2

SO, Eq. (10) (solid lines) and Eq. (11) (dashed lines).
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divergency, and we may call their values spin relaxation
gaps, accordingly. These gaps are thus direct measures of
the spin relaxation rate. We note that the two lowest
minima of the triplet modes are shifted to nonzero wave
vectors, Q � 	QSO. Thus, the spin relaxation gap is by a
factor 1=2 smaller than the eigenvalue at Q � 0 [12].

Without spin-orbit interaction, the WL of wires with
width W <L’ is dominated by the transverse zero mode
Qy � 0. Integrating over the longitudinal momenta Qx

then yields the quasi-1D WL [14]. However, in the pres-
ence of SOI, setting simply Qy � 0 is not correct. Rather,
one has to solve the Cooperon equation with modified
boundary conditions (BC) in transverse direction [4,15],

 ��i@y � 2eASy�C�x; y�jy�	W=2 � 0; (13)

for all x. Clearly, the transverse zero modeQy � 0 does not
satisfy this BC. We therefore apply a non-Abelian gauge
transformation to simplify this BC [15]. For quantum
wires of length L
 L’, we need a gauge transformation
acting in transverse direction, only: Ĉ! ~C � UĈ �U , with
U � exp�i2eASyy=@�, which simplifies the BC to,
�i@y ~C�x; y�jy�	W=2 � 0. For W <L’, transverse nonzero
modes contribute terms to the conductivity which are only
of order W=nL’, n integer. Therefore, it is sufficient to
diagonalize the 0-mode expectation value of the gauge
transformed inverse Cooperon propagator, ~H1D �

h0j ~C�1j0i. Additional terms are created in ~H1D due to the
non-Abelian nature of the transformation. We diagonalize
~H1D, neglecting the small term due to cubic Dresselhaus
coupling �. We introduce the notation, Q2

SO � Q2
D �Q

2
R,

where QD depends on Dresselhaus SOI, QD � me�2�1 �
me�F��=@. QR depends on Rashba coupling: QR �
2me�2=@. We finally find the quasi-1D triplet eigenvalues,
 

ET0

@D
� Q2

x �Q2
SO�

2
SO

�
1

2
tSO�2

SO � 2cSO�1� �2
SO�

�
;

ET	
@D
� Q2

x �
1

4
Q2

SO

�
4� tSO�4

SO � 4cSO�2
SO�1� �

2
SO�

	 2

��������������������������������������������������������������������������������
h��SO� �

16Q2
x

Q2
SO

�1� cSO�cSO � 2��2
SO�

s �
;

(14)

where �SO � �Q
2
R �Q

2
D�=Q

2
SO, and

 cSO � 1�
2 sin�QSOW=2�

QSOW
; tSO � 1�

sin�QSOW�
QSOW

:

(15)

Here, h��SO� � tSO�8
SO=4� �2

SO�1� �
2
SO��4c

2
SO�1�

3�2
SO � 3�4

SO� � t
2
SO�

2
SO�1� �

2
SO� � 6cSOtSO�4

SO�. In
Fig. 2, the gap of ET0 and the dispersion of the other two
triplet modes are plotted for pure Rashba coupling �SO �
1, as function of width W, scaled with QSO. In Fig. 3, the
magnetoconductivity is plotted for pure Rashba coupling
�SO � 1 as function of width W and magnetic field B.

Inserting Eq. (14) into WL correction Eq. (9), the integral
over momentum Qx is done numerically. We note a change
of sign from WAL to WL as QSOW becomes smaller than
1. In the crossover regime,QSOW  1 very weak magneto-
conductivity is found. In the limit WQSO 
 1, the gaps of
triplet mode dispersions, Eq. (14) coincide with 2D gap
values @DQ2

SO�1=2; 1=2; 1� of Eqs. (10) (Note that spin
quantization axis is rotated by the gauge transformation).
For WQSO < 1, the spin relaxation gap of triplet mode ET0

is to first order in tSO and cSO: �0 � DQ2
SO�2cSO�

2
SO�1�

�2
SO� � tSO�

4
SO=2� and the gap of ET	 is �	 � �0=2�

DQ2
SO�2cSO � tSO=2��4

SO. For WQSO � 1, we can inte-
grate over Qx analytically, and get
 

�� �

��������
HW
p��������������������������������

H’ � B��W�=4
q �

��������
HW
p����������������������������������������������������

H’ � B��W�=4�Hs�W�
q

� 2

��������
HW
p���������������������������������������������������������

H’ � B��W�=4�Hs�W�=2
q ; (16)

 

FIG. 2 (color online). For pure Rashba coupling �SO � 1:
(a) Gap of Triplet mode ET0 as function of wire width W (in
units of LSO � 1=QSO). (b) Dispersion of Triplet mode ET� and
(c) of ET� as function of W and momentum Q (scaled with QSO)
and E=�@DQ2

SO� � 1=2 for comparison.

 

FIG. 3. The quantum conductivity correction in units of 2e2=h
as function of magnetic field B (scaled with bulk relaxation field
Hs) and width W (scaled with spin-precession length LSO) for
pure Rashba coupling, �SO � 1.
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in units of e2=h. We defined HW � @=�4eW2�, and the
effective external magnetic field,

 B��W� �
�

1� 1
��

1�
W2

3l2B

��
B: (17)

The spin relaxation field Hs�W� is for W < LSO,

 Hs�W� �
1

12

�
W
LSO

�
2
�2

SOHs: (18)

The similarity to the effective magnetic field, Eq. (17),
could be expected, since linear SOI enters the Cooperon,
Eq. (7), via an effective magnetic vector potential [16].
Cubic Dresselhaus SOI gives rise to additional spin relaxa-
tion, Eq. (8), which has no analogy to magnetic field and is
therefore not suppressed. When W is larger than spin-
precession length LSO, higher transverse modes become
relevant, which may remove the oscillatory behavior of
triplet eigenvalues as function of W seen in the zero mode
approximation, Fig. 2 [17]. One can expect that in ballistic
wires, le > W, the spin relaxation rate is suppressed in
analogy to the flux cancellation effect, yielding the weaker
rate, 1=�s � �W=Cle��DW

2=12L4
SO�, where C � 10:8

[18].
In conclusion, for wire widths W smaller than spin-

precession length LSO, spin relaxation due to linear
Rashba and Dresselhaus SOI is suppressed. The spin re-
laxes then due to cubic SOI, only. The total spin relaxation
rate as function of wire width is for W < LSO,

 

1

�s
�W� �

1

12

�
W
LSO

�
2
�2

SO

1

�s
�D

�m2
e�F��2

@
3 ; (19)

where 1=�s � 2p2
F��

2
2 � ��1 �me��F=2�2�� is the 2D

spin relaxation rate. Using the analogy to a magnetic field,
the enhancement of spin relaxation length Ls �

�����������������
D�s�W�

p
can be understood qualitatively: In a wire an electron
covers by diffusion in time �s an area WLs. Requiring
that to be equal to L2

SO yields 1=L2
s � �W=LSO�

2=L2
SO, in

agreement with Eq. (19). Reduction of spin relaxation has
recently been observed in optical measurements of
n-doped InGaAs quantum wires [5], where �SO  1, and
in WL measurements in InGaAs, GaAs, and GaN wires [6].
Reference [5] reports saturation of spin relaxation in nar-
row wires, W � LSO, attributed to cubic Dresselhaus cou-
pling, in full agreement with Eq. (19). Thus, when
dephasing length L’ exceeds L� � @=m2

e�F�, a WAL
peak should reappear at small magnetic fields, lB > L�.
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