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Excess Vibrational Modes and the Boson Peak in Model Glasses
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The excess low-frequency normal modes for two widely used models of glasses are studied at zero
temperature. The onset frequencies for the anomalous modes for both systems agree well with predictions
of a variational argument, which is based on analyzing the vibrational energy originating from the excess
contacts per particle over the minimum number needed for mechanical stability. Even though both glasses
studied have a high coordination number, most of the additional contacts can be considered to be weak.
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Our understanding of liquids is based on the idea that
liquid structure is largely determined by strong short-
ranged repulsions and that the longer-ranged attractions
can be treated as a perturbation [1]. Similar considerations
were used to study jamming at zero temperature as a
function of density ¢ [2,3]. When potentials are repulsive
and have a finite range, there is a sharp jamming transition
at ¢ .. This Letter ties together two systems: it connects the
marginally jammed state just above ¢, of granular pack-
ings [2,3] to the boson peak of glasses [4—15]. The latter
peak is believed to be key to the mysterious, apparently
universal, low-temperature properties of amorphous solids.
We find that the longer-ranged part of the interaction for
more realistic interatomic potentials gives only small cor-
rections to the behavior of the marginally jammed solid.
Our result can be viewed as a conceptual extension of the
perturbation theory of liquids to the case of jamming.

In the marginally jammed state, the low-frequency nor-
mal modes of vibration are fundamentally different from
the long-wavelength plane waves expected from elasticity
theory [2,3]. The unusual nature of the modes is reflected
in the density of vibrational states D(w) versus frequency
w [2,3]. At the transition, D(w) has a plateau extending to
o = 0. This is very different from the expected Debye
scaling D(w) * w?"! in d dimensions [16], which is nor-
mally observed in solids. At densities above ¢ .., the plateau
no longer extends to w = O but terminates at a frequency
*. The dramatic rise in D(w) at w* corresponds to the
onset of anomalous modes. Similar excess modes are
observed in boson peaks of glasses.

In this Letter, we demonstrate that the theoretical frame-
work [17-19] used to explain the modes in marginally
jammed solids at zero temperature can be extended to the
anomalous modes in two more realistic models of ‘“‘repul-
sive glasses,” by which we mean systems that undergo
glass transitions due to the repulsive part of their potentials
as the temperature is lowered. The zero-temperature jam-
ming transition of spheres with finite-ranged repulsions,
which we will call point J to distinguish from other jam-
ming transitions, coincides with the density at which the
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system has just enough contacts to satisfy the constraints of
mechanical equilibrium [2]. This is called the isostatic
condition. The average coordination number z (i.e., the
average number of particles with which a given particle
interacts) needed for mechanical stability is z, = 2d,
where d is the spatial dimension [20,21]. By compressing
the system or increasing the range of interaction, we in-
crease z. These extra contacts suppress anomalous modes
at low frequencies [17-19]. We will show that, in systems
with long-ranged interactions, there is a well-defined di-
vision between a relatively few strong repulsive inter-
actions (stiff contacts) and the more numerous weaker
interactions (including attractions), which can be treated
as a correction.

We will study the onset frequency of the anomalous
modes w! in two widely used models of glasses and the
glass transition and compare the simulation results with
theoretical predictions [19]. We use a mixture of 800 A and
200 B spheres with equal mass m interacting in three
dimensions via the Lennard-Jones potential [22]:
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where r;; is the separation between particles i and j and €;;
and o;; depend on the type of particles under considera-
tion: €45 = 1.5€44, €pp = 0.5€44, 045 = 0.8044, and
opp = 0.88044. The potential is cut off at r;; = 2.50;
and shifted to satisty V(2.50;;) = V'(2.50;;) = 0. For
these systems, the density is given in units of p =
No3,/L? and €44, o4, and m are set to unity. We restrict
the densities to lie above p = 1.2, where the pressure is
positive. When this is not the case, there can be low-
frequency modes arising from rather different physics.

For comparison we also study a system with purely
repulsive interactions where ¢, exists. We simulate a
mixture of 500 A and 500 B spheres with oz = 1.40,
and equal mass m, interacting via the repulsive Lennard-
Jones potential, [1]
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where € is the characteristic energy, and o;; =
(0; + 0;)/2. For these systems, we characterize density
with the packing fraction ¢ = 7/6(Nyo3 + Ngoy)/L>.
We set e =1, m = 1, and o4 = 1. The simulations were
all carried out in a cubic box with periodic boundary
conditions. We study zero-temperature (7T = 0) configura-
tions which were obtained by quenching initially random
(T = o) configurations of particles to their local energy
minima at 7 = 0 using conjugate gradient energy minimi-
zation [23].
In the harmonic expansion, the energy of particle dis-
placements SR ; from their equilibrium positions is
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where V' and V" are the first and second derivatives of the
pair potential V(r) with respect to r, and 7;; = r;;;; is the
equilibrium separation vector between particles i and j.
Here, 5131-]- = SR, — 5131», and 5131# is the projection of
SR, ; on the plane perpendicular to 7;;. We diagonalize
the dynamical matrix [16] to obtain normal modes |n),
and their corresponding eigenvalues &,. The normal-
mode frequencies are w2 = &,, where the index n runs
from 1 to Nd. From these frequencies, we calculate the
density of vibrational states, D(w). It is instructive to also
calculate D')(w), obtained by neglecting the second term
in Eq. (4) (i.e., the stress term). This corresponds to replac-
ing V(r) with unstretched springs, each chosen to have the
same stiffness V”(r) as for the original potential.

In Figs. 1(a) and 1(b), we show two curves, D(w) (heavy
curves) and D©(w) (light curves), corresponding to the
stressed and unstressed cases, at each density. Figure 1(a)
shows results for the repulsive Lennard-Jones systems.
Close to the unjamming transition, these systems are ap-
proximately equivalent to the repulsive harmonic systems
studied previously [2,3]. Just above the transition, D(w)
has a plateau down to @ = 0. Upon compression the onset
of these anomalous modes shifts up to w*, below which
D(w) decreases to zero. Figure 1(b) shows the results for
the system with Lennard-Jones interactions. Because there
are attractive interactions, the jamming transition lies in-
side the liquid-vapor spinodal [2,24] and is inaccessible.
Thus, the plateau in the density of states never extends to
w = 0.

It is important to note that D©(w) falls much more
sharply than D(w) as w decreases below w*, but that
D(w) and D©)(w) are nearly indistinguishable above w*.
Here, w* corresponds to the onset of the anomalous modes
in unstressed systems. At high densities, the sharp peaks in
DO(w) below w* arise from linear combinations of nearly
degenerate long-wavelength plane waves. (The lowest

(a)

FIG. 1. Density of vibrational states of 3D glasses of N =
1000 particles, averaged over 100 configurations. We plot D(w)
for stressed systems (heavy curves) and DY(w) for unstressed
systems (light curves) interacting via (a) the repulsive Lennard-
Jones potential at ¢ — ¢. = 107% (solid line), 1072 (dotted
line), 0.1 (dot-dashed line), and 0.2 (dashed line); and (b) the
Lennard-Jones potential at p = 1.2 (solid line), 1.4 (dotted line),
and 1.6 (dashed line).

peak has plane waves with wave vector, k; = 27/L, where
L is the box size, while the second peak has k, = 2/27/L
as one would expect for the two lowest frequency modes in
an elastic solid.) Thus, the onset of anomalous modes lies
above these peaks. In the infinite system-size limit, the
peaks should smooth out to yield the normal scaling:
D(w) ~ w?! in d dimensions.

We now recapitulate the theoretical ideas that address
the properties of high-coordination systems [19]. In gen-
eral, extra contacts increase the frequency of the lowest-
frequency anomalous modes in two ways: (i) they can
increase the energy cost of a mode by adding extra nodes
so that some bonds are unstretched during an oscillation,
and (ii) they can leave the number of nodes fixed but
instead increase the average restoring force (and therefore
the energy) for the normal-mode displacement.

A variational argument calculates an upper bound for the
energy of a normal mode by minimizing the energy with
respect to these two contributions. The first term in Eq. (3)
indicates that a good trial function would have nodes, i.e.,
small values of (513,~j * 7;j)%, where V" is large. Thus the
71N/2 contacts with the highest values of V" introduce
nodes in the trial function. The remaining (z — z;)N/2
contacts increase the energy of the trial mode by increasing
the restoring force for displacements according to the first
term in Eq. (3) [19]. We rewrite Eq. (3) as

SE©) = SE, + 8E,, SE = 86EO + 8E;, (4

where 6E|, 6E,, and 6 E; represent the energy costs asso-
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ciated, respectively, with the z;N/2 stiffest contacts, the
remaining (z — z;)N/2 weak contacts, and the contribu-
tion of the stress term [the second term in Eq. (3); see
Ref. [18]]. Note that SE© is the energy cost of a mode for
the unstressed system.

We now construct approximate expressions for
these contributions. Reference [17] argues that 6E; =
Ak (z; — z.)%, where k; = (V"), is the average over the
7)N/2 contacts with the highest values of V”. This is
consistent with earlier simulation results for harmonic
springs for z; —z, =3 [18]. While k; varies strongly
with density and potential, we expect A; to depend only
weakly on these quantities [25]. To obtain A, we compare
to simulations of unstressed systems with springs of equal
stiffness. The precise value of A; depends on which point
in the density of states we choose to represent the onset of
anomalous modes. In the following analysis, we use the
value w! where D©(w) reaches 0.25 of its maximum
height, which fixes A; = 0.018. We would have obtained
a somewhat different constant if we had compared with
data at a different point in the rise, but the difference would
be small because D©)(w) rises abruptly.

To estimate 6 F,, we assume that for the normalized trial
mode, the displacements of i and j are uncorrelated with
each other if i and j are connected by weak contacts. Then
<(51§ij “ 7;j)*) = 2/Nd for an N-particle system in d di-
mensions [19]. Thus 6E, = ﬁ > 1 V"(r;;), where the sum
>'" runs only over pairs of particles i and j connected by
the (z — z;)N/2 weakest contacts. We have shown numeri-
cally that this approximation is reasonable for a system
with particles connected by harmonic springs at their equi-
librium lengths with two very different stiffnesses. For
such a system, the stiff springs contribute only to J0FE,
the weak springs contribute only to 0E,. Our expressions
for 6E, and 6 E; were thus verified cleanly.

We estimate 6E5 as follows. For uncorrelated displace-
ments between particles i and j, ((51?(’,#)2) ~ 2(d — 1)/dN,
leading to §E; = A3S, where S = 1/NY ,;[V/(r;))/r;],
and A; = (d — 1)/d is of order unity.

Note that 0 E5 does not depend on z;, so it does not affect
the energy minimization with respect to z; or z; itself. In
order to compute z;, we thus compute the total energy cost
in absence of stress:

w

1
SE® = 0.018k;(z; — z,)? + —
1(11 Zc) Nd .

VI (r; j): (5)
where k; = (V"), is the average over the z;N/2 contacts
with the highest values of V", and Y sums over the pairs
of particles connected by the (z — z;)N/2 contacts with the
smallest values of V. By minimizing 8 E©) with respect to
71, we obtain an upper bound on the energy and therefore
the frequency, w* = \/OE;,, of the lowest-frequency
anomalous modes in the unstressed systems.
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FIG. 2. Left axis: The characteristic frequency w? (open sym-
bols) calculated from numerical simulations and the correspond-
ing theoretical predictions w* (crosses). Lines are to guide the
eye and connect the theoretical points. Right axis: the fractional
deviation from isostaticity §Z; = (z; — z.)/z. (closed symbols),
as functions of (a) distance from the unjamming transition,
A¢p = ¢ — ¢,., for repulsive Lennard-Jones mixtures, and
(b) density p for Lennard-Jones mixtures.

In Fig. 2, we compare this theoretical prediction for w*
with the onset of anomalous modes, w?, from simulations
in the unstressed system [determined by where DO(w)
reaches 0.25 of its maximum value]. The agreement is
excellent everywhere, with no adjustable parameters. We
have verified that the agreement is equally good (though
with a different coefficient A,) if we define w' by a differ-
ent point in the rise of D©)(w), as long as we are consistent
in our definition of w for all potentials and densities.

Our results show that even though a typical repulsive
amorphous solid may have a high coordination number and
therefore appear to be far from the unjamming transition,
most of the contacts are weak. The number of stiff contacts
is only slightly in excess of the minimum needed for
mechanical stability. This is shown in Fig. 2 (solid tri-
angles) for both potentials at all densities studied. Even
for the Lennard-Jones system, where the power-law tail
of the interaction leads to a divergent total coordina-
tion, we find that (z; — z.)/z. < 0.6 at all densities. Thus
(z1 — z.)/zc is a small parameter.

While the results of Fig. 2 are for unstressed systems,
real glasses have nonzero stresses. To estimate the onset of
anomalous modes for systems with stress, we must calcu-
late the total energy cost of a mode, 6E = 6E©) + SE;.
Figure 3 shows that for our systems, sE©) ~ —§E;, where
SEO is evaluated at its minimum with respect to z; for
both potentials at different densities. Thus, there is a near
cancellation of two large terms leading to a small value of
6E (with a large uncertainty) and therefore a very low
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FIG. 3. The energy cost of the lowest-frequency anomalous
mode for an unstressed system, SEO as a function of S =
1/NY;;V'(r;;)/r;; for repulsive Lennard-Jones mixtures (solid
circles) and Lennard-Jones mixtures (open triangles). The con-
tribution of the stress term to the energy cost of a mode is 6 E; =
A3S, where Aj is of order unity. The straight line fit corresponds
to SEO = —1.6S.

onset frequency for the anomalous modes in the stressed
systems. This is consistent with the finding that the ex-
pected scaling of D(w)~ w? for plane-wave normal
modes is eclipsed by an approximately linear frequency
dependence at small w for both potentials. The near can-
cellation may be a result of the history of how the system
was prepared [18].

Our results provide a plausible explanation for the origin
of the excess vibrational modes of the boson peak in
repulsive glasses. For two commonly studied models, we
have shown that the boson peak derives from the same low-
frequency anomalous modes that arise at point J for sys-
tems with finite-ranged repulsions. Several theories have
been advanced previously for the boson peak [4-11].
Fractal systems [4] as well as disordered ones [7-9] can
exhibit excess vibrational modes, but glasses are typically
not fractal and low-coordination crystals can also display
excess modes [15]. Approaches by Phillips [26], Thorpe
[27], and Alexander [21] are also based on the idea that a
minimum average coordination number is needed to pre-
vent zero-frequency modes. However, those theories are
limited to nonrigid covalent networks or systems interact-
ing with attractive potentials, respectively. By contrast,
Ref. [19] argues that the soft mode analysis can not only
be applied to repulsive glasses, as we have done here, but
also to low-coordination crystals and network glasses such
as silica and crystobalite.

For our model repulsive glasses, we have shown that
(z; — z.)/z, remains small even when z/z, is arbitrarily
large. It is for this reason that the marginal-coordination
approach can be applied to these systems with high coor-
dination. As long as (z; — z.)/z. is small, the behavior of
the glass is governed by the physics of point J and iso-
staticity. Even though the unjamming transition itself may
be inaccessible—as it is in the Lennard-Jones system
studied here—the effect of the longer-ranged part of the
potential can be treated as a correction. This theory can

therefore be viewed as a conceptual generalization of the
perturbation theory of liquids to the case of jamming.
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