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In response to recent experiments by the Berkeley group, we construct a model of superflow through an
array of nanosize apertures that incorporates two basic ingredients: (1) disorder associated with each
aperture having its own random critical velocity, and (2) effective interaperture coupling, mediated
through the bulk superfluid. As the disorder becomes weak there is a transition from a regime where phase
slips are largely independent to a regime where interactions lead to system-wide avalanches of phase slips.
We explore the flow dynamics in both regimes, and make connections to the experiments.
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Introduction.—The issue of dissipation in the superflow
of helium in a multiply connected geometry has been
recently addressed in a series of experiments by the
Berkeley group [1]. The nanoaperture arrays employed in
these experiments allow a significant increase in what
otherwise would be very weak superfluid currents, an
important step towards the creation of ultrasensitive
matter-wave interferometers, e.g., superfluid SQUID gyro-
scopes [2,3]. At the same time, interesting physical ques-
tions related to the dynamics of such systems have been
raised.

Specifically, at low temperatures the superflow of 4He
through a single aperture is punctuated by regular, isolated
dissipative events, as first observed in Refs. [4,5]. These are
believed to be due to phase slips that occur whenever the
superflow velocity through an aperture reaches a critical
value [6–8]. The aperture arrays studied by the Berkeley
group have demonstrated several regimes of superflow. At
temperatures roughly 160 to 15 mK below T�, it appears
that phase slippage in different apertures is not simulta-
neous; Sato et al. [1] refer to this as the asynchronous
regime of temperatures. Next, there is a narrow interval
of temperatures from 15 to 5 mK below T�, within which
all apertures appear to phase slip simultaneously, i.e., Sato
et al.’s synchronous regime. We argue that a possible
explanation of the observed behavior lies in the competi-
tion between the interaperture coupling mediated through
the bulk superfluid and randomness of the critical veloc-
ities of individual apertures (e.g., associated with surface
roughness). At temperatures even closer to the �-point the
synchronous dissipative regime of the superflow crosses
over to a reversible Josephson regime [5,9].

In a variety of physical settings, including sliding tec-
tonic plates [10], the magnetization of random-field mag-
nets [11], desorption of helium from porous materials [12],
and solids with disorder-pinned charge-density waves
(CDWs) [13], competition between disorder and interac-
tions leads to interesting physical effects. Most notable
amongst these is a phase transition between states where
on one side disorder dominates and various parts of the

system evolve largely independently, whereas on the other
side interactions dominate and macroscopic portions of the
system evolve in concert in ‘‘system-wide’’ avalanches. It
is natural to look for similar phenomena in the superflow of
helium through arrays of nanosized apertures.

In this Letter we address the issue of the transition from
synchronous to asynchronous phase-slip dynamics of
superflow through an array of nanoapertures connecting a
pair of superfluid reservoirs. The main ingredients of our
description are apertures that have random, temperature-
dependent critical velocities, along with an effective inter-
aperture coupling mediated via superflow in the reservoirs.
We develop a model for the time-dependent superflow
through the array of nanoapertures. We analyze this model
both via a mean-field approximation and via an exact
numerical analysis for arrays consisting of a relatively
small number of apertures. By using these techniques we
find that at a fixed chemical-potential difference between
the reservoirs each aperture phase slips at the correspond-
ing Josephson frequency. However, owing to the disorder
in the critical velocities, not all apertures slip at the same
instant in the Josephson period. Thus, we identify two
effects: (a) strong disorder washes out the aperture-to-
aperture synchronicity amongst the phase slips, which
leads to the loss of the ‘‘whistle’’; and (b) if the disorder
is sufficiently weak, the collective phase-slip dynamics
undergoes a disorder-driven phase transition from a regime
of largely independently phase-slipping apertures to a
regime in which a macroscopic number of the apertures
phase slip at the same instant in a system-wide avalanche.
We believe that this model and our analysis of it captures
the essential physics taking place in the Berkeley group’s
experiments [1].

Basic model.—The system we wish to describe consists
of two reservoirs of superfluid 4He, separated by a rigid
barrier. Embedded within this barrier is an array of aper-
tures, as shown schematically in Fig. 1. We specialize to
the case of an N � N array of apertures, centered at the
sites of a square lattice of lattice parameter ‘, with each
aperture having radius r0. It is convenient to regard the
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superfluid system as comprising three components: two are
bulk components [i.e., the left (L) and right (R) reservoirs];
the third consists of the superfluid inside the apertures.
Thus, the total free energy of the system can be expressed
as

 H � HL �HR �
X

apertures

Hi: (1)

We describe the state of the bulk helium in terms of the
superfluid order-parameter phase fields. In doing this we
are neglecting effects of amplitude excitations of the order
parameter, including vortices. In contrast, within the aper-
tures we retain both amplitude and phase degrees of free-
dom. We imagine controlling the system by specifying the
phases �L=R on surfaces in the bulk superfluids lying far
from the array of nanoapertures (see Fig. 1). We believe
that this level of description allows us to capture the
following important elements: (a) apertures that exhibit
narrow-wire-like metastable states, these states being con-
nected by phases slips; and (b) interactions mediated
through the bulk superfluid in the two reservoirs, which
couple pairs of apertures to one another and also couple the
apertures to the control phases �L=R.

We connect the description of the bulk superfluids to that
of the superfluids within the apertures by specifying the
phases at the interfaces; i.e., in the vicinity of the aperture
openings we specify the phases to be�L=R

i (Fig. 1). Having
specified �L=R

i and �L=R, we can express HL=R through a
set of effective couplings between the phases in the vicin-
ities of the various apertures and the phases at infinity:

 HL=R �
Ks
4

X
ij

��L=R
i ��L=R�Cij��

L=R
j ��L=R�; (2)

where Ks is the superfluid stiffness and the effective inter-
aperture and self ‘‘capacitances’’ are defined via C�1

ij �
�ij

4�r0
�

1��ij
4�jrijj

, where rij is the distance between the ith and

jth apertures. To account for phase-slippage processes
within an aperture, which arise from vortex lines crossing
the aperture, we shall use a modified phase-only model that
accounts for vanishing of the amplitude associated with
vortex lines by keeping track of the number of phase slips
that have occurred. Therefore, we take the energy of the
superfluid inside the ith aperture to be

 Hi �
Ks
2
J��L

i ��
R
i � 2�ni�

2; (3)

in which J�� �r2
0=d� accounts for the geometry of the

aperture, where d is of the order of the membrane thick-
ness. The integer ni counts the net number of phase slips
that would occur in the ith aperture if the system were to
progress to its present state from a reference state in which
the phases were uniform throughout the system. For con-
venience, we focus on the case in which the system is left-
right symmetric and the state is antisymmetric. Thus we set
�R � ��L, �R

i � ��
L
i .

We complete the description of the model by specifying
the single-aperture dynamics, and thus the mechanism by
which energy is dissipated in the apertures. The superfluid
velocity vi in aperture i is defined by the phases at the
aperture openings: vi � @r�i=m �

@

dm �2�
L
i � 2�ni�.

Correspondingly, the supercurrent through the aperture is
given by Ii �

KsJ
@
�2�L

i � 2�ni�. When the velocity
through the ith aperture exceeds its critical value vc;i (or,
equivalently, �L

i � �ni exceeds �c;i), a vortex line nucle-
ates and moves across the aperture, which decreases the
phase difference across the aperture by 2�. To determine
the configuration of the superfluid after a phase slip, we
note that the phase difference along a path from the far left,
through the ith aperture, to the far right drops by 2�, while
the phase difference along a path through any other aper-
ture remains unaffected. In the model, we implement this
kind of phase-slip event by sending ni to ni � 1 (assuming
all flow is to the left) and finding a new set of values for all
of the �L

i ’s by minimizing the total free energy, Eq. (1).
Implications of the model.—We shall work at constant

difference �� in the chemical potential between the res-
ervoirs, so that the control parameter �L evolves linearly
in time, according to the Josephson-Anderson relation

 �L � ��R �
��
2@

t: (4)

As �L ��R grows, so do the superfluid velocities through
the various apertures, punctuated at regular intervals by
velocity drops associated with phase-slip processes. As,
beyond a brief transient interval, the total energy of the
state is periodic in �L with period �, the total current
through the array must be a periodic function of time with
the period given by the Josephson frequency !J � ��=@.
Because of the randomness of the critical velocities
amongst the apertures, the velocities in the various aper-
tures do not reach their critical values simultaneously. If
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FIG. 1. Schematic diagram of the model system. Left: the
location of the aperture array on the membrane is indicated by
the black region, and the phases of the bulk superfluids far away
from the nanoaperture array are labeled �L and �R. Center:
slice through the membrane, with apertures being represented by
breaks in the membrane (white). Right: boundary conditions on
hemispherical surfaces near the openings of the ith aperture.
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the distribution of critical velocities is sufficiently narrow,
the array may, as we shall demonstrate shortly, suffer a
system-wide avalanche (SWA). By SWA we mean that
when the weaker apertures (i.e., those having smaller
critical velocities) slip, superflow through the neighboring
apertures that have yet to slip increases, due to the inter-
aperture interaction, and this drives them to their own vc;i,
causing a cascade of phase slips in which an appreciable
fraction of apertures in the array slip. Experimentally,
SWAs would be reflected in a periodic series of sharp
drops in the total current through the array of apertures
as a function of time. Time traces of the total currents in the
SWA and the disordered regimes are contrasted in Fig. 2.

We have used both numerics and a mean-field theory to
analyze the ‘‘quasistatic’’ dynamics of the superflow. For
arrays having small numbers of apertures, the quasistatic
state of (mechanical) equilibrium may be determined nu-
merically at each step, allowing for phase slips whenever
the flow velocity in an aperture exceeds its critical value, as
the control parameter �L evolves parametrically. As a
consequence of the long-range nature of the interaperture
couplings Cij, the array dynamics is well approximated by
mean-field theory. Via this mean-field theory, we find a
self-consistent equation for the average value h�L

i i, in
which the effective interaperture coupling enters through
the parameter B � �h

P
j�iCiji and the effective self-

interaction through C � hCiii. This self-consistent equa-

tion can have multiple solutions for certain values of �L,
corresponding to the SWA regime, provided the disorder is
sufficiently weak.

We can use the mean-field theory to construct a phase
diagram that demarcates SWA and disordered regimes. For
the case of a normal distribution of width �, a simple
inequality determines the SWA regime:

 � 	 �c �
2
�������
2�
p

JB
�C� B� 4J��C� 4J�

; (5)

where �c is the critical width of the distribution. At a
critical strength of the disorder, the discontinuity in the
mean-field supercurrent vs time plot vanishes.

To test the results of the mean-field theory, we have
compared its current vs time traces with those obtained
from a numerical investigation performed on a finite lat-
tice. These curves, computed for various widths of the
disorder distribution, are shown in the inset of Fig. 2. In
the numerics, avalanches occur only when the distribution
of critical velocities is narrower than approximately the �c
as obtained from mean-field theory.

The two main results of our Letter are summarized in
Fig. 3. The dashed curve shows the amplitude of the current
oscillation Islip (i.e., half the distance between smallest and
largest current during a single period in Fig. 2) vs the
disorder strength. As the disorder becomes stronger, the
phase slips in the various apertures become less synchro-
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FIG. 2 (color online). Total current through an array of aper-
tures as a function of time, computed in mean-field theory, at
various disorder strengths. The Gaussian distributions of critical
phase-twists �c;i have widths � and means �c � 3�. As the
disorder strength is increased, the amplitude of the current
oscillations decreases. The sharp drops in the current, which
correspond to system-wide avalanches, disappear for � * 0:2.
(B � 0:10 �m; C � 0:19 �m; J � 0:01 �m corresponding to
65� 65 periodic array with ‘ � 3 �m, r0 � 15 nm, and d �
50 nm.) Inset: comparison between mean-field (solid lines) and
exact calculation (dots).
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FIG. 3 (color online). Amplitude of the oscillation of the
current Islip (dashed line), and drop in the current caused by an
avalanche (solid line), as functions of the disorder strength for
the array parameters used in Fig. 2. A and N-A indicate the SWA
and disordered regimes, respectively. Inset: Solid line is the
amplitude of the oscillation of the current, as a function of
temperature, using the ‘‘effective disorder’’ model described in
the text, Eq. (6). Dashed line: ideal amplitude, for the case of
perfectly synchronous phase slippage, corresponding to the
absence of disorder- and edge-driven inhomogeneity. Dots:
experimental values with current rescaled by a factor of 1.5 [1].
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nous, and the oscillations in the current gradually disap-
pear. The solid curve shows (half) the current drop caused
by SWA (i.e., half the height of the vertical drop in current
in Fig. 2) vs the disorder strength. The current drop plays
the role of an order parameter in a second-order phase
transition that is tuned by the strength of the disorder. As
the disorder becomes stronger, the order parameter de-
creases, becoming zero at a critical disorder strength (�c �
0:2), corresponding to a transition from the SWA to the
disordered regime. Within our mean-field theory, we find
that the order parameter scales as ��c � ��1=2.

Comparison with experiments.—In their experiments,
the Berkeley group measured the amplitude of the whistle
(i.e., Islip) as a function of temperature at fixed chemical
potential difference [1]. These experiments find an onset of
current oscillations at T�. As the temperature is lowered
below T�, Islip begins by increasing from zero, and then
decreases gradually. To obtain the temperature dependence
of Islip, we augment our model with a description of how
the distribution of vc;i’s depends on temperature. In the
regime near T�, which is addressed by the Berkeley group,
the critical velocity in an aperture depends on temperature
via vc ’ @=m��T�, where ��T� ’ �0�1� T=T��

�2=3 is the
superfluid healing length [8,14]. We hypothesize that dis-
order may be included by modifying this relation to read

 vc;i�T� ’
@

m��T�

�
1�

xi
r0

�
; (6)

where xi is a single, temperature-independent length, char-
acterizing the surface roughness in the ith aperture, and we
take it to have a Gaussian distribution [15]. For T� � T >
10 mK, we can compare the results of our model to those
of the experiments. The general features are reproduced:
the initial increase in Islip is associated with an increase in
the superfluid fraction; the gradual decrease at lower tem-
peratures is due to the loss of synchronicity amongst the
apertures, which is caused by the effective increase in the
strength of the disorder (see the inset in Fig. 3, where the
xi’s are chosen from a Gaussian distribution with �x �
0:6 nm). We also note that the general features of the
current vs time traces, Fig. 2, are similar to those of the
type III experiments described in Ref. [1].

In our discussion so far we have ignored thermal fluc-
tuations and edge effects. We can model the effect of
thermal fluctuations by adding annealed disorder to the
critical velocity distributions. However, for the ex-
periments described in Ref. [1] we find that the width of
this disorder is significantly narrower than that of the
quenched disorder, and we thus neglect it. Edge effects
are built into the interaperture interaction and cause the
superflow velocities in the outer apertures to be higher than
in the inner ones, leading to systematic inhomogeneity. We
estimate that for the inset of Fig. 3 this inhomogeneity can

account for 45% of the amplitude drop at the lowest
temperatures.

Concluding remarks.—We have developed a model to
describe phase-slip dynamics of systems similar to those
explored by the Berkeley group [1]. We find that strong
local disorder in the critical velocities leads to a loss of
synchronicity of phase slips amongst the various apertures.
We also find that competition between this disorder and the
effective interaperture coupling leads to a phase transition
between avalanching and nonavalanching regimes of the
phase-slip dynamics. Our model reproduces the key physi-
cal features of the Berkeley group’s experiments [1], in-
cluding a high-temperature synchronous regime, a low-
temperature asynchronous regime, and a transition be-
tween the two. We therefore feel that our model captures
the essential physics explored in these experiments, and its
consequences suggest new avenues for research that could
reveal the presence, structure, and dynamics of phase-slip
avalanches.
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