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The LiH* molecule is prototypical of the indirect dissociative recombination (DR) process, in which a
colliding electron destroys the molecule through Rydberg capture pathways. This Letter develops the first
quantitative test of the Siegert state multichannel quantum-defect theory description of indirect DR for a
diatomic molecular ion. The R-matrix approach is adopted to calculate ab initio quantum defects,
functions of the internuclear distance that characterize both Rydberg states and the zero-energy collisions
of electrons with LiH" ions. We identify the doorways to fast indirect DR as complex resonance
manifolds, which couple closed channels having both high and low principal quantum numbers. This
sheds new light on the competition between direct and indirect DR pathways and suggests the reason
previous theory underestimated the DR rate by an order of magnitude.

DOI: 10.1103/PhysRevLett.98.173201

The LiH molecule was one of the first participants in
early Universe chemistry, and it played a key role in the
cooling of primordial gases. Therefore, the relative abun-
dance of LiH and its formation process have drawn signifi-
cant attention in models of the Universe. Stancil ef al. [1]
noticed that direct radiative association of neutral atoms,
Li + H— LiH + v, occurs at the very slow rate coefficient
of ~107%0 cm3 s

On the other hand, radiative association with ionic hy-
drogen Li + H" — LiH" + v is predicted to occur [2,3] at
the much higher rate of ~1071 ¢cm?s~!. The resulting
LiH* and LiH abundances are controlled by photoioniza-
tion, collisions, and dissociative recombination (DR) with
free electrons. A recent DR experiment for LiH' [4] has
measured the DR rate coefficient for collisions at 7 =
139 K (12 meV) to be (6 +2) X 1077 ¢cm?s™!. From nu-
merous ab initio calculations of the LiH and LiH" poten-
tial surfaces [5—10], there is no Born-Oppenheimer neutral
state that crosses the ionic ground state potential curve
anywhere near the ionic minimum. Thus, the high mea-
sured DR rate for such an indirect or noncrossing process is
challenging to reconcile with existing theoretical results.
The rate coefficient estimated theoretically in Ref. [1] is
2.6 X 1073 cm?®s™!. Another theoretical study by Florescu
et al. [10] applied multichannel quantum-defect methods
with the relevant nonadiabatic coupling elements obtained
from a generalized Hellmann-Feynman theorem [11] to
calculate that the 139 K DR rate coefficient should equal
3.6 X 10 cm®s~!. Since both of these theoretical studies
underestimate the DR rate for this simple diatomic by more
than an order of magnitude, it shows that the proper
physical description of the underlying mechanism for in-
direct DR processes continues to challenge our theoretical
understanding.

Quantum-defect theory in connection with frame trans-
formation into a basis of Siegert vibrational states [12,13]
has shown promise in describing DR for a model diatomic
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[14] and for the triatomic Hy molecule [15], systems for
which indirect Rydberg state pathways dominate. But to
date there has been no rigorous test of the Siegert-state-
based multichannel quantum-defect theory (MQDT) for-
mulation for an experimentally studied system for which
the relevant quantum-defect matrices have been deter-
mined directly in an ab initio scattering-type calculation.
Accordingly, the main goal of the current Letter is to
analyze dissociative collisions between a low-energy elec-
tron and the LiH™ ion, as a fundamental prototype system
that provides a stringent test of this combination of theo-
retical elements: R-matrix theory, MQDT, and frame-
transformation theory based on Siegert pseudostates [16—
19].

The body-fixed adiabatic eigenquantum defects w2 (R)
are related to the energy differences (in a.u.) between the
potential curves of the ion U™ (R) and the neutral Rydberg

states U,?y(R) by Mulliken’s equation

1

UMR) = U (R) = s

ey
where the effective quantum number Ilé,\(R) =n— ,u/y\(R),
and A denotes the projection of the Rydberg electron
angular momentum / onto the axis of the diatomic mole-
cule. Of course, [ is not a good quantum number, so 7y is an
eigenindex distinguishing different Rydberg series of LiH.
Fundamentally, body-frame quantum defects are repre-
sented by a matrix ,uﬁ,(R) with different partial waves
coupled by off-diagonal elements, after which the ,u{}(R)
are obtained as its eigenvalues. Ab initio potential energy
surfaces by themselves provide no direct information about
off-diagonal couplings or, equivalently, about the eigen-
vectors U ly(R), and many authors tend to neglect them [10]
or estimate them using a two-channel Landau-Zener curve-
crossing formula [20] or sometimes by fitting them in a
diabatic representation [21].
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But the present study exploits the familiar MQDT theo-
rem [18] that smoothly connects quantum defects (multi-
plied by ) at energies just below the ionization threshold
to R-dependent short-range scattering phase shifts (or
multichannel scattering or reaction matrices) just above
the threshold:

7y (R) = > Up(R)53 (R)Upy (R). 2)

Here 8{} are the low- or zero-energy eigenphases for e~ +
LiH™ collision, and the eigenvector matrix is U(R), which
transforms the short-range K-matrix into diagonal form.
We used the diatomic R-matrix package [22] to calculate
the short-range K matrix by matching to Coulomb func-
tions at an R-matrix boundary of ry = 25a,. The target was
described by an augmented valence triple-zeta Slater-type
orbital basis set [23]. From the calculated '3% and 33+
quantum defects shown in Fig. 1, the s-wave quantum
defect is only weakly perturbed from its Li* limit of
0.399, over a wide range of internuclear distances. Thus,
coupling to nuclear motion will be controlled by higher
partial waves, namely, p and d waves. The 'II and 3II
quantum defects have been calculated to be an order of
magnitude smaller, and they have negligible impact on the
final DR results.

The internuclear distance R is a good body-frame
“‘quantum number’” when all electrons are confined within
the box specified by ry and the Born-Oppenheimer ap-
proximation is strictly valid. The vibrational frame trans-
formation connects R with the laboratory-frame quan-
tization of this degree of freedom expressed by vibrational
wave functions ¢ ;,(R). Siegert pseudostates [12,13] pro-
vide a unified description of the bound vibrational states
and the vibrational continuum. In the present case, they
solve the vibrational Schrodinger equation and boundary
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FIG. 1 (color online). Upper panels: The calculated quantum-
defect matrix elements are shown versus the internuclear dis-
tance—(a) singlets, (b) triplets. Lower panels: The solid curves
are the eigenvalues of the matrices in (a) and (b). The black dots
are eigenquantum defects extracted from n = 4 states in exten-
sive bound state configuration-interaction calculations [10].

conditions:

d? jG+1)

¢;,(0) = 0; (% - ikjv)¢ w(®)lg, = 0. (4)

In the above equations, j is a rotational quantum number of
the ion, and M stands for its reduced mass, while R
denotes a nuclear radius beyond which we approximate
the interaction potential in (3) to be constant and ¢ ;,(R) =
exp(ik;,R) for R = R,. Figure 2 shows an example of the
j =0 Siegert state momentum eigenvalue distribution.
Because the nuclei are confined within Ry = 10q,, we
obtain only 4 bound states, in contrast with the expected
total of 7 bound states found in Refs. [6,10]. However, for
the lower vibrational levels that fit inside, agreement in the
level spacing is achieved within 2 cm™2.

Because the orthogonality relation between two differ-
ent Siegert pseudostates is slightly modified [13], a surface
term [14] is added to the standard frame-transformation
integral [24], yielding

PR R imT A
S ) = ﬁ) " AR (R ®), b (R)

. A
N Z.CZ"ju(Ro)(ffzmE (RO))I,I’ &1 (Ro)
kjv + kj’v/

(&)

The underline in this equation denotes that u” is a matrix
with indices ,uj},(R). Moreover, the rotational indices (j, j')
of this body-frame S matrix do not give rotational transi-
tion probabilities—they serve only as a reminder that the
vibrational functions exhibit a j dependence through the
centrifugal term in Eq. (3). To reiterate, the rotational
frame transformation transforms a set of body-frame quan-
tum numbers (/, A, J) into a set of laboratory-frame
quantum numbers (I, j, J). The total angular momentum
J is defined via J =1+ j. The LiH" ion is treated in
Hund’s case (b), with spin-orbit coupling neglected.
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FIG. 2 (color online). Distribution of the j = 0 Siegert mo-
mentum eigenvalues from Eqs. (3) and (4) in the complex plane.
The circled states are the ones used in the calculations of this
Letter.

173201-2



PRL 98, 173201 (2007)

PHYSICAL REVIEW LETTERS

week ending
27 APRIL 2007

Definite total parity n = (—1)!*/ is also enforced, whereby

the short-range laboratory-frame scattering matrix is

Jn _ An oA .. An
Sijvro = ZUle S G U (6)
X

The real, orthogonal rotational transformation matrix Uf]’]
is taken from Ref. [16] and will not be repeated here.

As is familiar in MQDT applications, the “short-range’
or ‘“‘unphysical” scattering matrix S in Eq. (6) is diagonal
in the J and 7 quantum numbers. It represents an ampli-
tude for electron-ion scattering from an initial channel
defined by (I/j'v’) into a final channel defined by (/jv),
but some of these channels in S are typically closed ener-
getically. The physically relevant S matrix is, of course,
defined only in the open-channel space and is obtained by
the “elimination of closed-channels” formula [17]:

§phys = §o0 — §uc[§cc _ e_ziE(E)]_lg“’, (7

where the superscripts o and c, respectively, denote open
and closed sub-blocks of the unphysical S matrix (6), and
B(E) is a diagonal matrix of effective Rydberg quantum

numbers with respect to the closed-channels thresholds:

Bi: :L 8)
Y J2(E —E)

The total energy of the electron + ion system is E, and E;
is the ionization threshold for channel i = (vjI). Here, as
in Refs. [14,15], the high ionization thresholds are de-
scribed by a Siegert pseudocontinuum state with finite
widths, so E; and B(E) are complex. This fact alone
destroys the unitarity of SP"Y*, making it subunitary. The
lost flux is associated with a trapped Rydberg electron in a
closed channel that represents a high-lying vibrational state
that is dissociative, with outgoing-wave character, and has
a complex vibrational energy and a corresponding finite
lifetime. The departure from unitarity was identified in
Refs. [14,15] as the dissociation probability following
electron impact in incident channel i’:

[1-Ssrestre ] o

™
0'?7(85/) = %6,
with the incident electron collision energy ey = E — Ej,.
This cross section depends on the initial channel i/ =
(v'j'l'); the collision preserves the conserved quantum
numbers (J7n). The experimentally observable cross sec-
tion for dissociation following electron impact is then

1
2],/7_’_1 Z(ZJ + 1)0-;;]’U’(8j/vl)' (10)
nJl'

O'j/v/(sjlv/) =
We further average over a Boltzmann distribution of initial
rovibrational states of the ion at the temperature (7' =
300 K) appropriate to the experiment [4]. The correspond-
ing recombination rate «(E,) is

a(E.) = \2E.0(E,). (11)

This calculated DR rate exhibits an infinite number of
resonances near each closed-channel ionization threshold,
associated with autoionizing and predissociating states of
LiH. To compare with the storage ring experiments [4], we
must convolve over an anisotropic finite spread in the ele-
ctron energy; the spread is different for the parallel (AE) =
0.1 meV) and the much broader AE;, =12meV perpen-
dicular components of the relative velocity vector. The
convolution over parallel and perpendicular energy distri-
butions has been performed as was outlined in Ref. [15]
and elaborated in detail in Ref. [25]. Figure 3 summarizes
our results along with previous experimental and theoreti-
cal results. This figure also demonstrates the results of a
numerical test conducted to interpret the discrepancy be-
tween our theoretical results and those of Ref. [10].
Specifically, we have performed one set of calculations
that neglect the off-diagonal / mixing to mimic the calcu-
lations performed in Ref. [10], i.e., using only the diagonal
eigenvalue form ,uﬁ}(R) of quantum-defect matrix [shown
in Figs. 1(c) and 1(d)]. Introduction of this approximation
lowers the DR rate by an order of magnitude, and this
artificially restricted calculation agrees with the results of
Ref. [10]. Thus, the presence of R-dependent / mixing is
crucial for this system. Moreover, the rate is predominantly
controlled by d-wave collisions, whereas in Ref. [10] it
was assumed that it was dominated by p waves.

We now identify the qualitative mechanism responsible
for this high indirect DR rate. Figure 4 summarizes the
probabilities of various DR pathways at an energy near the
first vibrational threshold. For clarity, we have neglected
rotations in this qualitative analysis, because we found very
little effect of the rotational frame transformation on the
present results at this energy resolution. In Fig. 4, no
thermal averaging has been applied, and the LiH" ion is
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FIG. 3 (color online). DR rate: The solid curve is our calcu-
lated, anisotropically averaged rate for AE; = 0.1 meV and
AE| = 12 meV. The dashed curve shows the calculation from
Ref. [10]. The dotted curve is our truncated result obtained by
neglecting the off-diagonal couplings in the quantum-defect
matrix (see Fig. 1). The crosses denote the experimental data
[27], with a few characteristic error bars shown.
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FIG. 4 (color online). Contributions to DR probabilities are
shown as functions of energy near the first vibrational threshold:
The thick dashed curve represents the average DR probability.
The full spectrum of Rydberg resonances converging to the first
threshold is denoted by the thin line. Contributions from the
second and higher thresholds are shown as the thick solid curve.
The thin dashed curve is the probability of a vibrational excita-
tion process vy — vy, which is only energetically allowed above
the v = 1 threshold.

initially in the vibrational ground state. The DR probabil-
ities shown are the quantity inside the square brackets in
Eq. (9). The thick dashed curve denotes the average DR
probability across the threshold. The DR probability drops
from about 5% of the incident flux below the threshold
down to only 0.6% above the threshold. The DR probabil-
ity below the threshold is built up as the cumulative effect
of the dense forest of Rydberg resonances attached to the
first vibrationally excited state, seen as the thin solid curve.
The thick solid curve shows the contributions to DR proba-
bility when the incident electron is captured into Rydberg
states associated with higher vibrational thresholds.
Figure 4 also explains the reason the DR flux drops sharply
above the v = 1 threshold. The thin dashed curve shows
our calculated probability of vibrational excitation 0 — 1.
As can be noticed from the amplitudes for the probabilities
of both processes below and above the threshold, most of
the DR flux just below the threshold turns discontinuously
into vibrational excitation flux once that channel becomes
open. These results indicate that the DR process is con-
trolled by a doorway, namely, capture of the incident
electron into a Rydberg state attached to the first vibra-
tional threshold. However, if there is no higher-v or
lower-n perturbing level overlapping the total energy of
the collision complex, the electron will tend to autoionize
before DR can take place. Throughout the energy range of
a multichannel complex resonance, though, the initial cap-
ture can efficiently pump more energy into vibration at the
first electron recollision, and Fig. 4 shows that this resonant
perturbed Rydberg complex increases the DR rate by about
another factor of 3. This complex resonance mechanism for
indirect DR is believed to apply to many other systems that
are not controlled by the usual simple capture mechanism
into a dissociative state. A hint of its importance in Hj DR

is evident across the energy range 110-160 cm™! in Fig. 10
of Ref. [26].
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