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QED Calculation of the 2p3/, — 2p,/, Transition Energy in Boronlike Argon
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We perform ab initio QED calculation of the (15)*(25)*2p;»-(15)*(25)*2p, /5 transition energy in the
five-electron ion of argon. The calculation is carried out by perturbation theory starting with an effective
screening potential approximation. Four different types of the screening potentials are considered. The
rigorous QED calculations of the two lowest-order QED and electron-correlation effects are combined
with approximate evaluations of the third- and higher-order electron-correlation contributions. The
theoretical value for the wavelength obtained amounts to 441.261(70) (nm, air) and perfectly agrees

with the experimental one, 441.2559(1) (nm, air).
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In the recent Letter [1], high precision measurements of
the 2p3/, — 2py ), transition energy in Ar XV, Ar XIV,
Ar XI, and Ar X have been reported. The best results
have been achieved for the five-electron ion of argon,
where the experimental precision is 2700 times better
than the theoretical one and 200 times better than that in
the best of the previous measurements. This unprecedented
precision provides a unique possibility to test various
branches of the theory describing many-electron systems.

Since, within the framework of the nonrelativistic the-
ory, the 2p3/, and 2p,/, levels are degenerate, the transi-
tion energy is exclusively determined by the relativistic
and quantum electrodynamic (QED) effects. Hence, inves-
tigation of this transition allows us to test the many-
electron QED effects as well as calculations of the relativ-
istic electron-correlation effects up to an extremely high
level of accuracy.

To date ab initio calculations of many-electron QED
effects were considered for two- and three-electron ions
[2,3]. For systems with a larger number of electrons these
effects were accounted for only within some one-electron
or semiempirical approximations [1,4,5]. Although the
agreement of the results of Refs. [1,4] with experiment is
rather good, the precision of these calculations is much
worse compared to the experimental one. The improve-
ment of this precision is a challenging problem for the
theory. The goal of the present Letter is to improve the
theoretical precision for the 2p3/, — 2p;/, transition en-
ergy in Ar'3*. To achieve this goal we perform rigorous
QED calculations to first two orders of perturbation theory
and extremely large-scale configuration-interaction Dirac-
Fock-Sturm (CI-DFS) calculations of the third- and higher-
order contributions within the Breit approximation.

To formulate the QED perturbation theory we use the
two-time Green function method [6]. Instead of the usual
Furry picture, where only the nucleus is considered as a
source of the external field, we have used an extended
version of the Furry picture. It implies incorporation of
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some screening potential, which partly accounts for the
interelectronic-interaction, into the zeroth-order Hamil-
tonian. The perturbation theory is formulated in powers
of the difference between the full QED interaction
Hamiltonian and the screening potential. This accelerates
the convergence of the perturbative series. In addition, the
usage of the screening potential allows us to avoid the
degeneracy of the (15)%(25)*2p3/, and (15)*(2p1/2)*2p3)2
states that occurs if the pure Coulomb potential is em-
ployed as the zeroth-order approximation.

In the present Letter we use four different types of the
effective potential. The simplest choice is the core-Hartree
(CH) potential. To obtain this potential we add the radial
charge density distribution of the (four) core electrons

pe=23 (&+F (1)

n=1s,2s

with g and f being the upper and lower radial components
of the one-electron Dirac wave function to the radial
charge density distribution p,,. of the nucleus. The nuclear
charge density is described by a Fermi distribution. The
potential V- generated by the total charge density p =
Pnuc T+ p. 18 calculated self-consistently by solving the
Dirac equation.

The second choice is a local potential derived by inver-
sion of the radial Dirac equation with the wave function
obtained by solving the Dirac-Fock (DF) equation [7]. We
will refer to this potential as local Dirac-Fock (LDF)
potential. The construction of the potential Vjpg is de-
scribed in details in Ref. [7].

The other two potentials are based on the results of the
density-functional theory (DFT). The first one is referred to
as the Slater potential [8]. This potential belongs to the
wide family of x, potentials. Introducing the total one-
electron radial density p, via

pi(r) = 4mr?p(r), 2

© 2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.98.173004

PRL 98, 173004 (2007)

PHYSICAL REVIEW LETTERS

week ending
27 APRIL 2007

[ p(r)dr = ﬁ * pr)dr =N, 3)

where N is the total number of the electrons, one can write
the x, potential in simple form:

V() = Vi) + aﬁ’ dﬂ@—x (32 Srpir ))1/3
“4)

Here p, denotes the total one-electron density, i.e., includes
both core-electron and valence-electron density, while the
CH potential includes only the core-electron density. The
value of the constant x,, for the case of the Slater potential
is equal to 1. To improve the asymptotic behavior of this
potential at large distances, a self-interaction correction,
known also as the Latter correction [9], has been added to
it.

The fourth potential used in our calculations is known as
Perdew-Zunger potential Vp;. It was constructed as de-
scribed in Ref. [10].

The calculations of the transition energy can be conven-
iently divided in several steps. At first one has to solve the
Dirac equation with the effective potential. Bound-state
QED calculations require the representation of the quasi-
complete set of the Dirac equation solutions. This was
achieved by employing the dual-kinetic-balance (DKB)
finite basis set method [11] with basis functions con-
structed from B splines [12].

Next we calculate the set of Feynman diagrams shown in
Fig. 1 without any photon or electron loop, i.e., the part
describing the interelectronic interaction. The dashed line
ending with a triangle represents the interaction with the
screening potential, taken with the opposite sign. The
formulas for the calculations of the diagrams (a)—(d) in
the framework of QED can be found in our previous works
(see, e.g., Ref. [3]) devoted to the calculations of the two-
photon exchange corrections to the energy levels of Li-like
ions. We note that the diagrams containing only core
electrons as initial (final) states can be omitted, because

their contributions do not affect the transition energy. The
formulas from Ref. [3] in our case should be completed by
similar ones with the 1s state being replaced by the 2s
state. For the contributions of the diagrams (e)—(g) one can
obtain

AE, =V, )
V2
AE; = v 6
¥ ,,;,Sv . (6)
1 c vcn(s c sc)an
AE =2 5|5 S e B
c=1s2s;u . Ln#Fv n
1 gp, — & )V
+ lP PcPvnv Pv nc
gy
- Z(Vuv - vnnv(su - Sn)r )
where  V,, = —(alV,lb), 1pea(w) = {abll(w)|cd),

I(w) = e*a*a’D,,(w), D is the photon propagator, P is
the permutation operator (—1)* is the sign of the permu-
tation, 7/, () = (ab| L I(w)|cd), and the indices ¢ and
v denote the wave functlons of the core (1s or 2s) and the
valence state, respectively.

In the next step we should take into account the contri-
bution of the diagrams depicted in Fig. 2. The evaluation of
the one-electron QED corrections of order «, i.e., the self-
energy (SE) and the vacuum polarization (VP) (part (a) and
(f) in Fig. 2) in an external Coulomb field, is well known
[13-16]. High precision calculation of these diagrams for
the case of an arbitrary external field, however, is a more
involved problem [17,18]. We adopted the finite basis
method for such calculations.

The main QED contribution to the energy of the forbid-
den transition arises from the one-electron SE diagram. To
reach the required precision, this contribution has to be
evaluated with at least 0.1% of accuracy. With this purpose,
we decompose the SE diagram into zero-, one-, two-, and
many-potential terms, as indicated in Fig. 3, where the
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FIG. 1. Interelectronic-interaction diagrams.
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Self-energy and vacuum-polarization diagrams.
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FIG. 3. Diagram equation for the calculation of the one-
electron self-energy contribution.

dashed line ended with a cross denotes the full effective
external potential. The zero- and one-potential terms have
been calculated in momentum-space representation using
the traditional renormalization scheme. The two-potential
term has been evaluated in the coordinate space employing
the analytical representation of the partial-wave decompo-
sition of the free-electron Green function. To reach the
required accuracy necessitates to sum over partial waves
up to angular quantum number x = 50. Corresponding
calculation within the B spline approach would require
an enormously large number of the basis functions, which
would slow down the computation considerably. To cir-
cumvent this problem we extracted the slowly converging
two-potential term and calculated it separately. A new
numerical technique was elaborated for performing this
calculation and will be described in detail in our following
work. The remaining many-potential term, containing
three and more potentials, has been calculated within the
DKB approach as the difference between the term, con-
taining two and more potentials and the two-potential one.
The convergence of the partial-wave series for this term is
very fast and, to reach the required accuracy, the summa-
tion can be restricted to |k| = 10.

Since the contribution of the diagrams involving VP
loops [parts (f)—(j) of Fig. 2] was found to be very small,
we calculated it within the Uehling approximation. The
total VP contribution to the transition energy in the
Uehling approximation is about 0.2 cm™!. The remaining
Wichmann-Kroll contribution is negligible.

The other diagrams in Figs. 2(b)—2(e) represent the self-
energy screening contributions. The irreducible part of the
diagrams (d) and (e) can be calculated as a wave function
correction to the one-electron SE diagram. This part was
calculated using the same algorithm as it was used for the
calculations of the one-electron SE diagram. The diagrams
(b) and (c) are known as vertex diagrams. They were
calculated in the traditional way: The bound-electron
propagator was decomposed into zero- and many-potential
terms. The zero-potential term is ultraviolet divergent. It
was renormalized and calculated in momentum space to-
gether with the zero-potential term of the reducible part of
the diagrams (d) and (e). The remaining many-potential
term contains infrared divergent terms. These divergences
are canceled by the infrared divergences in the reducible
part of the many-potential term of the diagrams (d) and (e)
(see, e.g., Ref. [19]). All the many-potential terms were
calculated using the DKB approach.

The contribution of the interelectronic-interaction dia-
grams of the third and higher orders has been evaluated
within the Breit approximation using the CI-DFS method.
Going beyond the calculation performed in Ref. [1], the
basis set of the configuration state functions was signifi-
cantly enlarged and the quadruple excitations were in-
cluded. To separate out the contribution of the third- and
higher-order diagrams from the total energy, the following
algorithm has been used. First of all, the Hamiltonian of the
CI-DFS calculations was decomposed into parts

H=Hy,+ AV, (8)
H() = Hfree + Vnuc + Vscp (9)
V= Vee - Vscr’ (10)

where H, is the unperturbed (zero-order) Hamiltonian,
Ve and V,, denote the operators of the electron-nucleus
and electron-electron (Coulomb and Breit) interaction,
respectively. V defines a perturbation and A is a freely
varying parameter. This representation allows us to per-
form the expansion of the energy E in powers of A

E(\) = EO + AEW + N2E®@ + PEEI(L).  (11)

It is easy to see that the coefficients E!) and E@ corre-
spond to the first- and second-order diagrams depicted in
Fig. 1, calculated within the Breit approximation. Utilizing
the same basis set these coefficients have been evaluated in
two different ways: via numerical differentiation of E(A)
with respect to A evaluated at A = 0 and directly by means
of perturbation theory. The term E% is then calculated as
the difference between the total energy and the first three
terms in Eq. (11) evaluated at A = 1. The uncertainty of the
E®? contribution obtained in this way is estimated to be
about 3 cm™~!. The QED contributions of the third and
higher orders, which are beyond the Breit approximation,

TABLE I. Various contributions to the energy of the forbidden
transition in B-like argon and the total result (in cm™ ).

Veu VLpF Vpz Vsi
Epirac 243430 252768 248607 264826
EW —-1002.9  —20642  —1539.3  —3451.8
EQ e —14284  —12154  —1091.8  —993.3
ED oep 6.2 55 5.0 8.7
EGCD o 6940(3.0)  6082(3.0) 3760(3.0)  567.6(3.0)
Egbp 479 49.9 489 52.5
Egp -22 —5.4 -3.8 -8.2
Egin +2.0 +2.0 +2.0 +2.0
Egoop  —0.1(1) -0.1(1) —0.1(1) -0.1(1)
Erecol -0.6 -0.6 —0.6 -0.6
Eqoul 226569 226548 226552 226574
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have not yet been evaluated. We estimate the uncertainty
due to these effects as =2 cm™ .

The contribution of the one-electron two-loop QED-
radiative corrections is very small and can be estimated
using the analytical aZ-expansion reported in Ref. [20].
Finally, one has to take into account the nuclear recoil
effect. The calculation of this effect to all orders in aZ
was performed in our recent Letter [21], where the isotope
shift of the forbidden transition energies in B- and Be-like
argon has been investigated.

The results of our calculations are presented in Table 1.
In the first line of the table the difference between the one-
electron Dirac energies of 2p3/, and 2p,/, states, calcu-
lated for the different screening potentials, is given. In the
second row we give the contribution of first-order diagrams
from Fig. 1 [diagrams (a) and (e)]. These diagrams are
calculated in the rigorous framework of QED, i.e., taking
into account the energy dependence of the photon propa-
gator. In the third line the contribution of the diagrams of
the second order from Fig. 1 calculated within the Breit
approximation is given. In the fourth line we give the QED
correction to this contribution, i.e., the difference between
these diagrams evaluated within the rigorous QED ap-
proach and within the Breit approximation. In the fifth
line we give the contribution of the interelectronic-
interaction diagrams of the third and higher orders derived
from the CI-DFS calculations as described above. The
contribution of the first- and second-order diagrams from
Fig. 2 are presented in the sixth and seventh lines, respec-
tively. The uncertainty due to uncalculated third- and
higher-order QED effects is presented in eighth line. The
following lines compile the contribution of the two-loop
one-electron QED and the nuclear recoil correction, re-
spectively. Finally, in the last line we present the total
values of the energy of the forbidden 2p3/, — 2p,, tran-
sition in B-like argon, calculated for the four different
screening potentials. Averaging these values and account-
ing for the uncertainty due to the higher-order
interelectronic-interaction and QED effects, we obtain
E.; = 22656.1(3.6) cm™!. This value is 4 times more
precise than that of Ref. [1]: 22662(14) cm™'. The im-
provement mainly results from the calculation of the
second-order QED effects (lines 4 and 7 in the table) as
well as from the much more elaborated CI-DFS calcula-
tions performed in this work. Converting our result to the
wavelength in air with the aid of Ref. [22], one can obtain
441.261(70) (nm, air), which perfectly agrees with the
experimental result 441.2559(1) (nm, air) from Ref. [1].
Further improvement of the theoretical value can be
achieved by the reducing of the uncertainty of the CI-
DEFS calculations and computation of the QED diagrams
of the third and higher orders.

Summarizing, in this work we have calculated the en-
ergy of the forbidden 2p;3/, — 2p,, transition in the five-
electron ion of argon. The calculation incorporates the
rigorous treatment of the second-order many-electron

QED effects and the large-scale CI-DFS calculations of
the third- and higher-order electron-correlation effects.
This is the first ab initio treatment of the five-electron
system in framework of QED. Significant improvement
of the agreement between theoretical and experimental
data has been achieved.
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