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We perform lattice simulations of two-flavor QCD using Neuberger’s overlap fermion, with which the
exact chiral symmetry is realized at finite lattice spacings. The � regime is reached by decreasing the light
quark mass down to 3 MeV on a 163 � 32 lattice with a lattice spacing �0:11 fm. We find a good
agreement of the low-lying Dirac eigenvalue spectrum with the analytical predictions of the chiral random
matrix theory, which reduces to the chiral perturbation theory in the � regime. The chiral condensate is
extracted as �MS�2 GeV� � �251� 7� 11 MeV�3, where the errors are statistical and an estimate of the
higher order effects in the � expansion.
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In quantum chromodynamics (QCD), it is widely be-
lieved that chiral symmetry is spontaneously broken, mak-
ing pions nearly massless while giving masses of order
�QCD, the QCD scale, to the other hadrons. In fact, chiral
perturbation theory (ChPT), an effective theory based on
the spontaneously broken chiral symmetry, describes low
energy interactions of pions very accurately. Nevertheless,
theorists have not been successful in analytically solving
QCD and deriving the chiral symmetry breaking, due to its
highly nonperturbative dynamics.

The most promising approach to establishing the link
between QCD and ChPT is to utilize the numerical simu-
lation of lattice QCD, with which the every prediction of
ChPT can be tested in principle. For instance, the presence
of the so-called chiral logarithms, the effect of a pion
cloud, should be reproduced. Such a numerical test is,
however, not an easy task, because of rapidly increasing
computational cost in the small quark mass region where
ChPT is reliably applied. Another serious problem is
the explicit violation of the chiral symmetry at finite lattice
spacings in the conventional fermion formulations,
with which the conclusive test of ChPT requires well-
controlled and thus computationally demanding continuum
extrapolation.

In this work we improve this situation in two ways. First,
we employ Neuberger’s overlap fermion [1,2] for dynami-
cal quarks. It preserves exact chiral symmetry at finite
lattice spacings, and hence ChPT can be applied before
taking the continuum limit. Although the numerical cost of
the overlap fermion is almost 100 times higher than that of

the other fermions, new computational facilities at KEK
enable us to carry out such a work.

Second, we study the correspondence between QCD and
ChPT in the so-called � regime [3–5], which is character-
ized by the small pion massm� satisfyingm�L & 1 with L
the box size. In this regime ChPT is safely applied as an
expansion in terms of �2 �m�=�QCD, provided that the
condition 1=��QCDL�

2 � 1, the usual condition that the
box size is larger than the inverse QCD scale, is satisfied.
We set the sea quark mass to �3 MeV, for which m�L ’
1:0. With the space-time volume L3 � T ’ �1:8 fm�3 �
�3:5 fm�, the numerical cost is still not prohibitive even
with such a small sea quark mass, since the finite volume
provides a natural lower bound on the lowest eigenvalue of
the Dirac operator.

In the � regime, zero-momentum modes of the pion field
dominate the dynamics and the kinetic term gives only
subleading contributions. The Lagrangian of ChPT reduces
to L�0� � m�Re Tr�U	 with m the (degenerate) quark
mass and U [ 2 SU�Nf�] the pion field (Nf � 2 in this
work). The system is fully characterized by a parameter
m�V, where � is the chiral condensate and V is the space-
time volume L3 � T. Dependence on the topological
charge Q of the gauge field also becomes significant.

At the leading order of the � expansion, the chiral
random matrix theory (ChRMT) provides an equivalent
description of ChPT [6–8]. Furthermore, ChRMT can
predict the distributions of the individual eigenvalues of
the Dirac operator, which may be directly compared with
the lattice data. In the quenched approximation, a good
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agreement between ChRMT and lattice calculation has
been observed using the overlap-Dirac operator [9–11],
and � has been determined by matching the eigenvalues
[12]. The present work is an extension of these works to
two-flavor QCD. A preliminary report of this work has
been presented in [13], and an overview of our dynamical
overlap fermion project is found in [14]. Similar studies
have been done recently [15,16], but the � regime was not
reached because of larger sea quark masses.

We have performed numerical simulations on a 163 �
32 lattice at a lattice spacing a� 0:11 fm as determined
from the scale r0 ( � 0:49 fm) of the heavy quark poten-
tial. We employ the overlap fermion [1,2], whose Dirac
operator is

 D�m� �
�
m0 


m
2

�



�
m0 �

m
2

�
�5sgn�HW��m0�	; (1)

for the quark mass m. Here, HW��m0� denotes the stan-
dard Hermitian Wilson-Dirac operator HW��m0� �
�5DW��m0� with a large negative mass term (we choose
m0 � 1:6 throughout this work). For the gauge part, the
Iwasaki action is used at � � 2:35 together with unphys-
ical Wilson fermions and associated twisted-mass ghosts
[17], which preserves the global topological charge during
molecular-dynamics evolutions of the gauge field. This is
desirable for the � regime simulations since we can effec-
tively accumulate statistics at a given topological charge.
In this work our simulation is confined in a topological
sector Q � 0.

For the simulation with the dynamical overlap fermions
[18], we use the hybrid Monte Carlo (HMC) algorithm.
The sign function in (1) is approximated by a rational
function with Zolotarev’s optimal coefficients after pro-
jecting out low-lying eigenvalues of jHW��m0�j. With
10 poles the sign function has a 10��7–8� precision.
Thanks to the extra Wilson fermions, the lowest eigenvalue
of HW��m0� never passes zero, and hence no special care
of the discontinuity of the fermion determinant is needed.

The simulation cost is substantially reduced by the mass
preconditioning of the HMC Hamiltonian [19]. The heav-
ier overlap fermion mass for the preconditioner is chosen
to 0.4 except for two lightest sea quark masses where the
value is 0.2. The relaxed conjugate gradient algorithm to
invert the overlap-Dirac operator [20] also helps to speed
up the simulation by about a factor of 2.

For the sea quark mass we take seven values: 0.110,
0.090, 0.065, 0.045, 0.030, 0.020, and 0.002. The lightest
sea quark (m � 0:002) corresponds to the � regime. The
simulation cost measured by the number of the Wilson-
Dirac operator multiplication is plotted in Fig. 1. The upper
panel shows the cost per trajectory of length 0.5; the lower
panel presents the cost of inverting the overlap-Dirac op-
erator when we calculate the Hamiltonian at the end of
each trajectory. Increase of the numerical cost towards the
chiral limit is not as strong as expected: if we fit the data
assuming the scaling law �1=m� above m � 0:030, the

power � is 0.82 for the inversion and 0.49 for the total cost.
In the � regime the cost is even lower than the expectation
from the power law. This is because the cost is governed by
the lowest-lying eigenvalue rather than the quark mass as
explained below.

The number of trajectories is 1100 for each sea quark
mass after discarding 500 for thermalization. For the �
regime run at m � 0:002, we have accumulated 4600
trajectories. In addition, we have generated quenched lat-
tices at a similar lattice spacing with Q � 0 and 2. The
computational cost atm � 0:002 is about 1 h per trajectory
on a half rack (512 nodes) of the IBM BlueGene/L (2.8
TFlops peak performance).

The lowest 50 eigenvalues of the overlap-Dirac operator
D�0� are calculated at every 10 trajectories. We use the
implicitly restarted Lanczos algorithm for a chirally pro-
jected operator P
D�0�P
, where P
 � �1
 �5�=2.
From its eigenvalue Re�ov the pair of eigenvalues �ov

(and its complex conjugate) of D�0� is extracted through
the relation j1� �ov=m0j

2 � 1, that forms a circle on a
complex plane. For the comparison with ChRMT, the
lattice eigenvalue �ov is projected onto the imaginary
axis as � � Im�ov=�1� Re�ov=�2m0�	. Note that � is
very close to Im�ov (within 0.05%) for the low-lying
modes we are interested in.

In Fig. 2 we plot the ensemble averages of the lowest
5 eigenvalues h�ki (k � 1–5) as a function of the sea quark
mass. We observe that the low-lying spectrum is lifted as
the chiral limit is approached. This is a direct consequence
of the fermion determinant �

Q
k�j�kj

2 
m2�, which re-
pels the small eigenvalues from zero when m becomes
smaller than the lowest eigenvalue. This is exactly the
region where the numerical cost saturates as it is controlled
by �1 rather than m. We also find that the autocorrelation
length of the lowest eigenvalues is significantly longer in
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FIG. 1. Number of the Wilson-Dirac operator multiplication
per trajectory (upper panel) and per an overlap inversion (lower
panel). The curves are fit to data above m � 0:030 with the form
/ 1=m�.
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the � regime. We therefore use the jackknife method in the
statistical analysis with a bin size of 200 trajectories, with
which the statistical error saturates.

In the � regime, ChRMT predicts the probability distri-
bution pk��k� of lowest-lying eigenvalues �k, and thus their
ensemble averages h�ki �

R
1
0 d�k�kpk��k�. The correspon-

dence between ChRMT and ChPT implies the relation
h�ki � h�ki�V, from which we can extract �, once
h�ki’s are obtained. Correction for finite sea quark mass
m can also be calculated by ChRMT. At m � 0:002, it is
only 0.9% for the lowest eigenvalue, which is taken into
account in the following analysis.

We first compare the pattern of the eigenvalue spectrum
of the Dirac operator. In the ratios h�ki=h�li of low-lying
eigenvalues the factor �V drops off and the comparison is
parameter free. As Fig. 3 shows, the lattice data agree well
with the ChRMT predictions (middle panel). It is also

known that there exists the so-called flavor-topology dual-
ity in ChRMT: the low-mode spectrum is identical between
the two-flavor (massless) theory at Q � 0 and the
quenched theory at Q � 2 (right panel), while the
quenched spectrum at Q � 0 is drastically different (left
panel). This is nicely reproduced by the lattice data. These
clear patterns indicate that the low-lying modes of the
QCD Dirac operator are in fact responsible for the zero-
momentum mode of the pion field U, which induce the
vacuum with spontaneously broken chiral symmetry.

If we look into the details, however, there is a slight
disagreement in higher eigenvalues. For instance, the de-
viation in the combination k=l � 4=1 is 10%. The reason
for this will be discussed later.

Another nontrivial comparison can be made through the
shape of the eigenvalue distributions. We plot the cumula-
tive distribution ck��k� �

R�k
0 d�

0pk�� 0� of the three lowest
eigenvalues in Fig. 4. The agreement between the lattice
data and ChRMT (solid curves) is quite good for the lowest
eigenvalue. For the higher modes the agreement of the
central value is marginal while the shape seems well
described by ChRMT. Table I lists the numerical results
of both ChRMT and lattice data. To characterize the shape
of the distribution, we define the width h��ki ��������������������������
h�2
k i � h�ki

2
q

as well as its lattice counterpart h��ki�V.
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FIG. 3 (color online). Ratio of the eigenvalues h�ki=h�li for
combinations of k and l 2 1–4 (denoted in the plot as k=l). In
addition to the two-flavor QCD data (middle), quenched data at
Q � 0 (left) and 2 (right) are also shown. Lattice data (circles)
are compared with the ChRMT predictions (bars).
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FIG. 4 (color online). Cumulative distribution of the low-lying
eigenvalues. The horizontal error comes from the statistical error
of �. The solid curves are the ChRMT results with the input
from the average h�1i.

TABLE I. Comparison of the low-mode spectrum of ChRMT
and the lattice data. The number given in �	 is used as an input.

h�ki h�ki�V h��ki h��ki�V

k � 1 4.30 [4.30] 1.234 1.215(48)
k � 2 7.62 7.25(13) 1.316 1.453(83)
k � 3 10.83 9.88(21) 1.373 1.587(97)
k � 4 14.01 12.58(28) 1.414 1.54(10)
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FIG. 2. Lowest 5 eigenvalues �k as a function of sea quark
mass. Dashed line shows � � m.
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The overall agreement is very good, but we see deviations
of about 10% in the averages and 16% in the widths, at the
largest.

Because of the exact chiral symmetry in our simulation,
we do not expect significant effects due to finite a in the
comparison of low-lying eigenvalues. The largest possible
source of systematic errors is the higher order effects in the
� expansion, which is a finite volume effect. Although the
higher order corrections can not be calculated within
the framework of ChRMT, an estimate of their size can
be given by ChPT. The next-to-leading order correction
to the chiral condensate is given by �f1
 ��N2

f �

1�=Nf	�1=�FL�2g, where �1 is a numerical constant de-
pending on the lattice geometry [3]. Numerically, the
correction is 13% (we assume the pion decay constant F �
93 MeV), which is about the same size of the deviation of
the eigenvalue distributions.

Since the contribution from finite momentum modes is
expected to be more significant for higher eigenvalues, we
take the lowest eigenvalue as an input for the determination
of �. From the average of �1 we obtain �lata3 �
0:00212�6� in the lattice unit and �lat � �240�2��
�6� MeV	3 in the physical unit. The second error in the
latter comes from the lattice scale a � 0:107�3� fm. We
put a superscript lat in order to emphasize that it is defined
on the lattice.

In order to convert �lat to the definition in the MS
scheme, we have calculated the renormalization factor
ZMS
S �2 GeV� using the nonperturbative renormalization

technique through the RI/MOM scheme [21]. Calculation
is done at m � 0:002 with several different valence quark
masses. The result is ZMS

S �2 GeV� � 1:14�2�. Details of
this calculation will be presented elsewhere.

Including the renormalization factor, our final result is
�MS�2 GeV� � �251�7��11� MeV	3. The errors represent a
combined statistical error (from �1, r0 and ZMS

S ) and the
systematic error estimated from the higher order effects in
the � expansion, respectively. Since the calculation is done
at a single lattice spacing, the discretization error cannot be
quantified reliably, but we do not expect much larger error
because our lattice action is free from O�a� discretization
effects.

In this Letter we demonstrated that the lattice-QCD
simulation is feasible near the chiral limit, as far as the
exact chiral symmetry is respected. The link between QCD
and ChPT is established in the � regime without recourse to
chiral extrapolations. From their correspondence, the low
energy constants, such as the chiral condensate, can be
precisely calculated. Improvement of the precision may be
achieved by increasing the physical volume, as the higher
order effects in the � expansion are suppressed as 1=L2.
Further information on the low energy constants can be
extracted in the � regime by calculating two- and three-
point functions or analyzing the Dirac eigenvalue spectrum

with imaginary chemical potential [22–24]. This work is a
first step towards such programs.
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