
Effective Forces Induced by a Fluctuating Interface: Exact Results

D. B. Abraham,1,2 F. H. L. Essler,1 and A. Maciołek1,3,4

1Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
2Department of Chemistry and Miller Institute for Basic Science, University of California, Berkeley, California 94720-1620, USA

3Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
4Institute of Physical Chemistry, , Department III, Polish Academy of Sciences Kasprzaka 44/52, PL-01-224 Warsaw, Poland

(Received 21 December 2006; revised manuscript received 12 March 2007; published 24 April 2007)

We present exact derivations of the effective capillary wave fluctuation-induced forces resulting from
pinning of an interface between two coexisting phases at two points separated by a distance r. In two
dimensions the Ising ferromagnet calculations based on the transfer matrix approach give an attractive
force decaying as 1=r for large distances. In three dimensions mapping of the body-centered solid-on-
solid model onto the 6-vertex model allows for exact solution using the bosonization analysis of the
equivalent XXZ Heisenberg quantum chain. The exact result gives the attractive force which decays
asymptotically as 1=�r logr�.
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Interfaces between coexisting thermodynamic phases
exhibit large spatial fluctuations at temperatures above
the roughening transition. The length scale of such fluctu-
ations diverges with system size, so that the interface is
‘‘washed out’’ in the thermodynamic limit (unless suitable
external fields are applied), a result completely at variance
with classical thermodynamical expectations. Never-
theless, such a striking phenomenon has recently been
observed by a direct visual method in an ingeniously
constructed experiment with a colloidal system [1].
Further, there are many implicit manifestations in such
diverse areas as biological systems [2], the asymptotic
behavior of correlation functions [3], and vicinal sections
of crystals in the terrace-ledge-kink (TLK) model [4,5].
Here ledge fluctuations are examined, typically when there
is a short range interaction between such ledges, either
attractive or repulsive, together with a long-ranged repul-
sion which comes about because neighboring ledges can-
not cross and so restrict each others’ configuration space.
Such a force is said to be of ‘‘entropic’’ or ‘‘Casimir’’ type.
A crucial fact, which will be used later in another context,
is that the TLK model of a crystal surface can be mapped
onto the 6-vertex model of Lieb [6] and solved exactly,
with various phase transitions resulting, depending on the
nature of the short-ranged force: attraction gives surface
reconstruction, repulsion facet selection at a ‘‘magic’’
angle, with the facet disappearing by a roughening mecha-
nism. In this Letter we consider a related interfacial prob-
lem, but one in which geometric limitation of the con-
figuration of the interface manifests itself in a long range
attraction. This we analyze in d � 2 and d � 3 by using
exact d � 2 Ising techniques in the former case and an-
other 6-vertex mapping, together with some new results, in
the latter case. This 6-vertex mapping, due to van Beijeren
[7], is different from the TLK one, but has the crucial
common feature that it gives height conservation around
closed loops, a necessary condition for the integrity of the

surface. Further, it manifests a phase transition of rough-
ening type [8].

It is well known that chemicophysical forces can trap
colloidal particles at the liquid-liquid or liquid-vapor inter-
face at coexistence [9]. This phenomenon is widely used,
for example, to create the stable emulsions in systems
called Pickering emulsions [10]. Another scenario here is
that of a bifunctional particle, say a sphere, the surface of
which is divided at the equator into two hemispheres with
differential wetting properties. Since the colloidal particles
are much larger and more massive than the ones in the
phase separating systems, they restrict the motion of the
interface to which they are rigidly attracted strongly. As a
limiting case, they can be treated as spatially fixed. The
phase space restriction then implies, as we shall show later,
that, were the massive particles to be released, then they
would accelerate toward each other. The interest of such
questions stems not only from the various practical appli-
cations [9,11,12] but also from the basic requirement to
understand the nature of the effective forces between the
colloidal particles [13,14]. In particular, the important role
of the aforementioned capillary fluctuations is clear.
Substantial progress has recently been made [15,16], but
there remain a number of issues.

First, we calculate the incremental free energy of an
interface in the d � 2 Ising ferromagnet resulting from
pinning, which in this case can be achieved in various
ways. The method, which carries over to our d � 3 calcu-
lations, is to fix the interface at its extremities and to use
this for the reference state. The pinned state is then a
further restriction of the reference state in which two
interior points are required to have the same interface
displacement, but all such displacements are allowed
with equal weight. The associated partition functions are
calculated using the standard transfer matrix technique,
supplemented with the ‘‘domain wall state method’’ [17]:
the state jmi achieves localization at the position m on any
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line normal to the mean interface direction and can be
written as

 jmi � M�1=2
X
k

exp��ik�m� 1=2��Gy�k�j�i: (1)

Here j�i is both the G�k� vacuum and the maximal eigen-
vector of the transfer matrix V. The Gy�k� are Fermi
operators which ‘‘diagonalize’’ the transfer matrix for a
lattice of width M normal to the transfer direction [18].
Thinking of the transfer matrix as generating a discrete
Euclidean time evolution, the Gy�k� create ‘‘particles’’
with energy ��k� given by Onsager’s formula [19]
cosh��k� � cosh2K cosh2K� � cosk, where K is the
nearest-neighbor coupling in units of kBT, K� is the dual
coupling given by the involution sinh�2K� sinh�2K�� � 1.
It is important to note that jmi only localizes the interface
up to the bulk correlation length as is revealed by calculat-
ing the local magnetization [17]. The ratio of the partition
function with two pinned states jmi separated by a hori-
zontal distance 2n (see Fig. 1), denoted by Z	�njN;M� to
that for the unpinned system, denoted by Z�N;M�, is

 

Z	�njN;M�
Z�N;M�

�
1

h0jV2Nj0i

X
m

h0jVN�mjmihmjV2njmi

	 hmjVN�mj0i: (2)

As M ! 1, bringing in expression for hmj gives

 

Z	�njN;1�
Z�N;1�

�
X
m

�U�N � n;m��2U�2n;m�
U�2N; 0�

; (3)

where

 U�N;m� �
Z 2�

0

d!
2�

e�N��!��im!: (4)

Evaluating the sum over m in (3) gives

 

Z	�njN;1�
Z

�
U�2N � 2n; 0�U�2n; 0�

U�2N; 0�
: (5)

Finally, using the fact that

 lim
N!1

U�2N � 2n; 0�
U�2N; 0�

� e�2n��0�; (6)

we conclude that in the limit M, N ! 1 the incremental
free energy is given by

 �f	�n� � � log
�Z 2�

0

d!
2�

e�2n���!����0��
�
: (7)

Here ��0� is proportional to the inverse correlation length.
The asymptotics for large n of this are determined by the
Laplace method

 �f	 
 log
������������������������������
2���2��0�r=a0

q
�O�1�; (8)

where r � 2na0 and a0 is the lattice spacing, valid for
n��2��0� � 1, i.e., r� a0=��2��0�, where 1=��2��0� is the
interface stiffness. The stiffness comes in because the
surface tension is angle dependent on the lattice. The
question of angle dependence of (8) will be discussed
elsewhere. The implied force is

 F �r� 
 �
kT
2

1

r
: (9)

Notice that the law itself does not depend on the stiffness,
or on surface tension, but the range of validity does.
Techniques like those in Ref. [1] might be used to make
the lower bound on r as small as possible. The reader might
feel that the pinning mechanism is somewhat contrived. If
the interface were localized both at the boundaries and at
both the interior points, perhaps a more intuitive restriction
than ‘‘floating’’ at the same level, then Z	=Z! 0 as N !
1, rendering the definition useless. In experiments one
always has a finite system, which may introduce an addi-
tive term in (7), which is independent of n, but which may
well diverge with N, as would be the case with the alter-
native pinning just described. But for any finite N, this
would not come up in the force as in (9). There are many
variants here, which will be developed in a longer paper.

We turn now to d � 3 and consider the van Beijeren
body-centered-cubic solid-on-solid (BCSOS) [7] model,
where height changes are associated with vertex configu-
rations, as shown in Fig. 2. The fact that the allowed

 

++

x

(−N,0) (N,0)

(0,0)

(0,M)

(−n,m) (n,m)

FIG. 1 (color online). Schematic plot of Ising lattice with
interface pinned by its end points and in two interior points at
the same level. The nearest-neighbor ferromagnetic coupling is
K in units of kT. The transfer matrix acts in the x direction.
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FIG. 2. The arrow configurations of allowed configurations of
the 6-vertex model. The rule for associating plaquette heights on
the dual lattice is that, pointing along the arrow, the plaquette on
the right is higher. Vertices 1 to 4 have a diagonal height change
in one or the other direction. Vertices 5 and 6 have a ripple (no
diagonal height change) and are deemed to be flat. The weight
assignment, with K > 0, favors rippling over diagonal height
change.
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configurations are those of the 6-vertex model with two
arrows in and two arrows out guarantees height conserva-
tion around any close loop, which is required for the
integrity of the sheet. Along the �1; 0� direction, which is
normal to the transfer direction, the height difference of
abutting plaquettes is strictly �1. Labeling the row of
vertical arrows by eigenvalues of 2Szj for spin �1=2, the
following XXZ Heisenberg-Ising Hamiltonian,

 H XXZ � J
XM
j�1

��SxjS
x
j�1 � S

y
jS

y
j�1� � �SzjS

z
j�1�; (10)

S�M�1 � S�1 , � � x, y, z (cyclic boundary conditions) com-
mutes with the transfer operator, provided � �
1� �1=2�eK. Thus �1< �< 1=2. The region of interest
here is for �1<�< 1=2 where the interface is rough.
The ground state of (10) furnishes the maximum eigen-
value of the transfer matrix. Proceeding in the �1; 0� direc-
tion, the height difference at a separation r � 2na0 for
integer n is

 �h � 2
X2n
j�1

Szj: (11)

In this Letter, we are interested in the situation when �h �
0. The ratio of partition function with this height fixing to
that without it is

 

Z	�n�
Z

�
Z �

0

d�
�
f��; 2n� � e��f

	�n�; (12)

where f	�n� is the associated incremental free energy and

 f��; 2n� �
�

exp
�
i�
X2n
j�1

Szj

��
H XXZ

: (13)

We are interested in the large-n asymptotics of f��; 2n�.
We note that exp�� �f	�n�� is simply the probability that
the z component of the spin on the interval �1; 2n� is zero.
In this sense this quantity is related to Korepin’s ‘‘empti-
ness formation probability’’ and its generalizations
[20,21]. To calculate exp�� �f	�n�� we employ a boson-
ization analysis.

It is well known that the large distance behavior of
correlation functions in the Heisenberg-Ising model (10)
is described by a Gaussian model [22]

 H �
1

16�

Z
dx
�
v�@x��

2 �
1

v
�@t��

2

�
: (14)

Here the scalar field � is compact ��x� 
 ��x� � 8��,
and the velocity v and compactification radius 4� are given
in terms of the parameters of the lattice Hamiltonian (10)
and the lattice spacing a0 as � � � arccos����=4���1=2�,
and v � �Ja0 sin�4��2��=�2�1� 4�2��. The lattice spin
operator Szj is expressed in terms of the bosonic field as

 Szj 

a0

8��
@x��x� � A��1�ja1=8�2

0 sin
�
��x�
4�

�
� � � � ;

(15)

where x � ja0 and A is a known constant [23]. We now
turn to the bosonization of exp�i�

Pn
j�1 S

z
j �

1
2�. We first

note that this operator is a 2�-periodic function of �, which
allows us to write

 f��; n� �
e�in�

2
�hei��n

j�1�S
z
j�1=2�iH XXZ

� hei���2���n
j�1�S

z
j�1=2�iH XXZ

�: (16)

Application of (15) then gives (the staggered part of Szj
does not contribute to the sum as ��x� is a slowly varying
field)
 

ei��n
j�1S

z
j 
 A��� exp

�
i�

8��

Z na0

0
dx@x�

�

� A��� exp
�
i�

8��
���na0� ���0��

�
: (17)

Here A��� is a normalization constant. The expectation
value of (17) is easily calculated

 hei��n
j�1S

z
j iH 
 A����nc�

��=4���2 ; (18)

where c�1a0 is a short-distance cutoff. Using this result we
obtain the following expression for f��; n�:
 

f��; n� 

A���

2
�mc����=4���2

� ��1�n
A��� 2��

2
�nc������2��=4���2 : (19)

We can check (19) by comparing it to the known expres-
sion at the free fermion point � � 0. Here f��; n� can be
expressed as a Toeplitz determinant; see [18,24] and refer-
ences therein. The large-n asymptotics have been calcu-
lated in [25] with the result

 f��; n� �
a���

�2n��
2=2�2 � ��1�n

a�1� ��

�2n����2��2=2�2 ; (20)

where

 a��� � exp
�
�2

2�2

Z 1
0

dt
t

�
e�2t �

4�2

�2

sinh2��t=2��

sinh2�t�

��
:

(21)

This agrees with the general expression (19). It is now a
simple matter to calculate exp�f	�2n��, as for large n the �
integral is dominated by its saddle point. Hence

 e��f
	�n� 


A�����������������
log�nc0�

p ; (22)

where A and c0 are (�-dependent) constants. Thus, the
resulting force is attractive and behaves for large r as
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 F �r� 
 �
kT

2r log�rc0=a0�
: (23)

Notice the difference between (22) and (9).
In this Letter, we have presented exact calculations of

the incremental free energy resulting from pinning the
interface between two coexisting phases at two points
separated by a distance r. The case for d � 2 is more
detailed because it allows the interface to have a diffusive
structure at the molecular level, as is known to be the case
in real systems. The resulting force is attractive with a
remarkably long-ranged decay as 1=r. In d � 3, we have
treated this pinning phenomenon within the BCSOS model
of a random surface, using van Beijeren’s isomorphism
with the 6-vertex model. Thus, the interface is locally
sharp. It is defined at points on a Z2 square lattice. The
attractive force in this case does not differ strongly from
the d � 2 one, in that it decays as 1=�r logr� instead of as
1=r, a rather striking result. Note that these forces are of
much longer range than the electrostatic ones induced by
photon fluctuations, termed van der Waals [26] or the
fluctuation-induced Casimir-type repulsion between ex-
tended objects in similar systems. This 1=�r logr� result
has also been obtained by Lehle, Oettel, and Dietrich [16]
in a continuum model for a particular, but very physically
reasonable, case of contact of the interface with two ex-
tended objects; these we may think of as spheres each with
two hemispherical surfaces having different wetting prop-
erties which keep the sphere at the interface at an orienta-
tion and immersion which makes the equatorial line
separating the two wetting regions sit exactly in the inter-
face, as mentioned at the beginning of this Letter. The case
we have considered is an extreme one in that the colloidal
sphere has been treated as though it were a point (or a unit
cube on the dual lattice). In mitigation, our results for d �
3 are obtained for mesoscopic modeling which retains,
unlike the usual capillary wave scenarios, molecular scale
discreteness and which also shows a roughening transition.
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[9] P. Pierański, Phys. Rev. Lett. 45, 569 (1980).

[10] S. U. Pickering, J. Chem. Soc. 91, 2001 (1907).
[11] J. D. Jannopoulos, Nature (London) 414, 257 (2001).
[12] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Már-

quez, A. R. Bausch, and D. A. Weitz, Science 298, 1006
(2002).

[13] W. Chen, S. Tan, T.-K. Ng, W. T. Ford, and P. Tong, Phys.
Rev. Lett. 95, 218301 (2005).

[14] R. P. Sear, S.-W. Chung, G. Markovich, W. M. Gelbart,
and J. R. Heath, Phys. Rev. E 59, R6255 (1999).

[15] M. Oettel, A. Dominguez, and S. Dietrich, J. Phys.
Condens. Matter 17, L337 (2005).

[16] H. Lehle, M. Oettel, and S. Dietrich, Europhys. Lett. 75,
174 (2006).

[17] D. B. Abraham and F. T. Latremólière, Phys. Rev. Lett. 77,
171 (1996).

[18] T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod.
Phys. 36, 856 (1964).

[19] L. Onsager, Phys. Rev. 65, 117 (1944).
[20] V. E. Korepin, A. G. Izergin, and N. M. Bogoliubov,

Quantum Inverse Scattering Method, Correlation
Functions and Algebraic Bethe Ansatz (Cambridge
University, Cambridge, England, 1993).

[21] A. G. Abanov and V. E. Korepin, Nucl. Phys. B647, 565
(2002).

[22] A. Luther and I. Peschel, Phys. Rev. B 12, 3908 (1975);
F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981);
I. Affleck, in Fields, Strings and Critical Phenomena,
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