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We propose a novel mechanism leading to spatiotemporal oscillations in extended systems that does not
rely on local bulk instabilities. Instead, oscillations arise from the interaction of two subsystems of
different spatial dimensionality. Specifically, we show that coupling a passive diffusive bulk of dimension
d with an excitable membrane of dimension d� 1 produces a self-sustained oscillatory behavior. An
analytical explanation of the phenomenon is provided for d � 1. Moreover, in-phase and antiphase syn-
chronization of oscillations are found numerically in one and two dimensions. This novel dynamic insta-
bility could be used by biological systems such as cells, where the dynamics on the cellular membrane is
necessarily different from that of the cytoplasmic bulk.
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Introduction.—In spatially extended systems, spatio-
temporal oscillations usually arise from short-wavelength,
finite-frequency instabilities that affect the local dynamics
of the system’s bulk. Within that scenario, boundaries are
reduced to passive elements that play somewhat secondary
roles, such as wavelength discretization and wave vector
selection [1]. There are many situations in nature, however,
where boundaries have active dynamics. Fronts are known
to be initiated, for instance, at the interface between differ-
ent catalytic components in microcomposite surfaces [2].
Similarly, chaotic dynamics has been shown to arise in a
catalytic surface coupled to a (passive) gas phase [3]. Other
examples of active surfaces include Langmuir monolayers
[4] and membranes with active proteins such as proton
pumps [5]. These systems delimit regions of higher dimen-
sionality, which usually have different dynamics from that
of the active boundary.

Few studies have addressed the interplay between differ-
ent dynamics of a bulk and its boundary. In [6] it has been
shown that an active membrane can give rise to stationary
cytoplasmic patterns. Special attention has been paid to the
issue of pole-to-pole protein oscillations underlying sym-
metrical cell division in bacteria [7,8]. Most models of this
phenomenon assume that the main source of the oscilla-
tions are biochemical reactions occurring at the cell mem-
brane, with the cytoplasm being mainly passive, hosting at
most phosphorylation reactions [9–13]. It is thus of interest
to determine whether nontrivial dynamics can arise in the
limiting case of an active boundary delimiting a purely
passive bulk.

Motivated by this system, which is known to include
activator and inhibitor proteins [7], and taking into account
the fact that activator-inhibitor dynamics sustains excit-
ability [14], we will consider in what follows an excitable
membrane, limiting an otherwise purely passive bulk [15].
Indeed, we will show that this simplified scenario is able to
sustain dynamic spatiotemporal oscillations in a wide pa-
rameter range, even though neither the bulk nor the bound-
ary is oscillatory. Moreover, we will provide an analytical

explanation for this effect in the case of a one-dimensional
bulk and pointlike boundaries. This analysis allows us to
predict the extent of the oscillatory region in terms of the
relevant parameters: the system length and the coupling
strength between the bulk and the boundaries.

The model.—We consider a spatially extended passive
system affected by simple diffusion and linear degradation,
bounded by an active membrane with activator-inhibitor
dynamics. The equations that mathematically describe the
bulk are

 @tU � DUr
2U � �UU; (1)

 @tV � DVr
2V � �VV; (2)

where U and V are the concentrations of activator and
inhibitor, respectively, the corresponding diffusion coeffi-
cients are DU and DV , and both species are assumed to
decay at rates �U and �V [16]. The results shown below do
not change in the presence of a constitutive expression of
the bulk species, represented by the addition of constant
terms in the right-hand side of Eqs. (1) and (2).

The dynamics at the system’s boundary is given by

 

_u � f�u; v� � ku�n̂ � ~rU�; (3)

 _v � �g�u; v� � kv�n̂ � ~rV�: (4)

The reaction terms f�u; v� and g�u; v� are chosen to ac-
count for a local activator-inhibitor dynamics, so that the
u-nulcline [f�u; v� � 0] has a cubic shape in the (u, v)
space, while the v-nulcline [g�u; v� � 0] is monotonically
increasing, as in typical Fitzhugh-Nagumo models (see
Fig. 2 below). In particular, we have considered the follow-
ing expression in dimensionless form

 f�u; v� � u� q�u� 2�3 � 4� v; (5)

 g�u; v� � uz� v; (6)

where z and q control the shape of the nulclines. The
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parameter � that accompanies g�u; v� determines a differ-
ent time scale for both species, so that u is much faster than
v if �� 1. We consider in what follows z � 3:5 and q �
5, which renders the membrane excitable. Under this con-
dition, the membrane (when isolated from the bulk) is at
rest, and only when a small perturbation is applied to it, an
excursion corresponding to an activator pulse is produced.
The second term in the right-hand side of Eqs. (3) and (4)
accounts for the exchange of species between the mem-
brane and the bulk. The constants ku and kv determine the
coupling strength, while n̂ � ~rC� ~r� is the normal derivative
of the concentration field C�~r�, with n̂ being a unit vector
normal to the boundary and pointing towards the bulk.

Phenomenology.—In principle, one would expect the
system described above to be quiescent unless a perturba-
tion is applied to the membrane. Such a perturbation would
excite a concentration pulse at the membrane, which would
then propagate into the diffusive bulk and progressively
decay. However, coupling between the membrane and the
bulk can give rise to interesting new phenomenology.
Because of the coupling, degradation of the inhibitor in
the bulk leads to a decrease in the concentration of the
inhibitor also in the membrane, which subsequently al-
lows, via the activator-inhibitor dynamics, a pulse in the
activator concentration. After some time, the excitability
mechanism reduces the activator level spontaneously back
to the resting state, and the process can restart again and
repeat endlessly, leading to self-sustained oscillations even
when neither the membrane nor (evidently) the bulk are
intrinsically oscillatory. This is indeed observed in our
model, as we show below.

Once oscillations are autonomously occurring, we can
analyze what happens when the bulk is limited by two
opposing boundaries, similarly to an ellipsoidal bacterial
cell. If the distance between the poles is small enough, the
oscillations interfere and eventually become synchronized.
This is shown in the one-dimensional numerical simula-
tions presented in Fig. 1. Two regimes corresponding to in-
phase and antiphase oscillations of the two poles are ob-
served. For each regime, a plot of the time evolution of v at
the two boundaries is displayed. Additionally, spatiotem-
poral plots are shown in the right panels. The results clearly
show not only that self-sustained oscillations appear even
when the system is not intrinsically oscillatory, but that the
oscillations can synchronize either in phase or in antiphase.
The behavior persists even when the system is perturbed by
noise (data not shown), evidencing the robustness of the
phenomenon. In Fig. 1, the inhibitor diffusion was varied
in order to change the type of phase locking. As we show
below, other parameters can be similarly tuned to control
the system’s behavior.

Theoretical analysis in d � 1.—The effect of coupling
on the behavior of the excitable membrane can be deter-
mined by using the solution and boundary conditions of the
bulk Eqs. (1) and (2) in the membrane Eqs. (3) and (4). To
that end, we determine the stationary solutions of the

diffusion Eqs. (1) and (2) in a one-dimensional region of
length L. In the case of the inhibitor, the resulting density

profile is V�x� � V�0� cosh�
�����
�V
DV

q
�L2 � x�	= cosh�

�����
�V
DV

q
L
2	,

where V�0� � v. Its derivative at the boundary is then

 V 0�x � 0� � �v

�������
�V
DV

s
tanh

� �������
�V
DV

s
L
2

�
: (7)

This expression, when inserted into the steady-state mem-
brane equation,

 0 � �g�u; v� � kvV 0�x � 0�; (8)

leads to a new effective inhibitor nulcline

 v �
zu

1� l1
l0

tanh�L=2
l0
	
: (9)

Here l1 

kv
� and l0 


�����
DV
�V

q
. Note that the initial inhibitor

nulcline v � zu is modified due to the coupling with the
bulk, effectively decreasing its slope z as the coupling
increases. The same analysis can be done for the activator,
although in that case, the contribution from the coupling
with the bulk barely modifies the shape of the membrane
u-nulcline [f�u; v� � 0�], and therefore its effects will be
ignored in what follows.

 

FIG. 1 (color online). Oscillations of the membrane inhibitor v
in a one-dimensional bulk, bounded by two 0-dimensional
‘‘membranes.’’ The left panel shows time series in each of the
two boundaries (denoted, respectively, by a and b). Two regimes
are shown: in-phase and antiphase oscillations, labeled ‘‘1’’ and
‘‘2’’, and they are obtained by setting DV � 0:7 and DV � 0:3,
respectively. The two right panels show spatiotemporal repre-
sentations of the inhibitor concentration in color code, with time
running from top to bottom and space represented horizontally.
The parameters used in these simulations are L � 10, � �
0:015, kv � 5�, �V � DV=100, and �U � DU � ku � 0. As
initial condition, the system is set at the rest state with additional
(small) spatial fluctuations, so that there is a slight heterogeneity
in the initial concentration field.
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With the above considerations, we can now understand,
both qualitatively and quantitatively, the effect of
membrane-bulk coupling. As shown in Fig. 2, the effect
of the diffusive and degrading bulk can be mapped to an
effective variation of the slope of the g�u; v� nulcline,
yielding a change from an excitable situation where only
one stable fixed point exists, to an oscillatory regime where
the fixed point is unstable and a limit cycle (not shown)
develops. Finally, large enough coupling even leads the
system back again to an excitable regime. The result
obtained in Eq. (9) shows that three length scales control
the system’s behavior in the steady state: L, l0, and l1. The
first one, L, is the natural length of the system. The second
one, l0, is a characteristic length determined by the ratio of
the diffusion DV and the degradation �V , and corresponds
to an action length of the bulk. Finally, the effect of the
coupling enters directly through the combination of the
coupling strength kv and the time scale ratio �, giving rise
to a characteristic length scale l1.

Making use of Eq. (9) and considering the location and
the stability of the fixed point (determined by the crossing
of the nulclines), we can analytically predict the region in
parameter space where the system will behave as an oscil-
lator. The corresponding phase diagram is shown in Fig. 3.
The theoretically predicted boundaries of the oscillatory
region (solid lines in Fig. 3) agree very well with simula-
tions. Therefore, the steady-state analysis yields a clear
understanding of why and when the excitable membrane
becomes unstable and starts to oscillate. The second set of
important properties of the system, i.e., synchronization
and phase locking between the oscillating poles, have to be
determined numerically. Such an investigation leads to
different types of oscillatory regimes, as shown in Fig. 3,

in which antiphase oscillations (stars) separate the region
of in-phase oscillations (empty circles) from a domain
where the two poles of the system oscillate independently
(squares), namely, having the same frequency but an un-
defined phase relation. Note that for large L the pole
oscillations cannot interact, since the opposing membranes
are too far away. On the other hand, for large enough kv
(i.e., l1) oscillations (when they occur) can only be in
phase. Finally, we note that increasing the inhibitor diffu-
sion coefficient DV makes l0 longer, which changes the
overall scale of the phase diagram.

Extension to d � 2: numerical simulations.—Once the
one-dimensional case is understood and fully character-
ized, we now consider a two-dimensional system with a
rectangular geometry. The main difference is that now the
membrane is also distributed in space (but without internal
diffusion [9] ), while in the previous case it was zero
dimensional. However, by analogy to the one-dimensional
case the relevance of the different parameters can be under-
stood, and again the same phenomena are encountered.
Every parameter has an important physical meaning. DV

is responsible for the indirect coupling between membrane
elements and is thus a necessary ingredient for the syn-
chronization. DU is crucial to avoid several pathologies
that occur in d > 1, such as accumulation of inhibitor
along the membrane, which leads to local blocking of the
oscillations. �V is key to the spontaneous onset of local
oscillations at the membrane, as we have already seen in
the one-dimensional case. kv determines the new effective
nulcline due to the influence of the bulk and controls the
synchronization phases.

Furthermore, there are now two length scales in the
problem associated with the system size. L1 is the length
of the rectangular system and its width is denoted by L2.

 

FIG. 3. Phase diagram of a one-dimensional diffusive and
degrading bulk delimited by two point excitable boundaries.
Solid lines have been determined analytically. The oscillatory
region lies within these lines. Symbols correspond to numerical
simulations: �, stationary state; �, in-phase oscillations; �,
antiphase oscillations; �, independent oscillations. Parameters
are those of Fig. 1 except for DV � 0:5, and kv and L are varied.

 

FIG. 2. Qualitative scheme of the effect of the bulk on the
nulclines of the excitable membrane. A full circle denotes a
stable fixed point and an empty circle an unstable one. The g
nulcline labeled g0 corresponds to the absence of coupling with
the bulk. g1 and g2 define modified v-nulclines for increasing
kv � 0. The case of g1 corresponds to a self-sustained oscilla-
tory regime, while for larger coupling (g2) the system is back at a
steady state again. The f nulcline is practically unmodified by
the coupling, and it is left unchanged in this schematic plot.
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Assuming L1 > L2, we are interested in observing oscil-
lations along L1, mimicking the pole-to-pole oscillations in
elongated bacteria. In this case, the lateral walls can domi-
nate the main activity of the system, preventing antiphase
oscillations for short lengths. For very long lengths the
communication is fragile. For intermediate lengths L1 we
expect the oscillations along the minor axis to be more or
less synchronized in phase and not to disturb excessively
the pole-to-pole oscillations.

We now present the phenomenology that can be ob-
served numerically in two dimensions. In Fig. 4, temporal
sequences of two-dimensional snapshots of the density
map of V are displayed for different kinds of behavior.
The system is initiated again from the rest state, super-
imposed with small random heterogeneous perturbations.
When dynamical noise is added to the simulations, not
only is synchronization maintained, but also the different
regimes develop easier and faster (results not shown).
Figure 4(a) corresponds to small couplings, for which the
system is unable to oscillate and remains in a stable fixed
point, corresponding to the quiescent state of the excitable
membranes. For larger coupling [Fig. 4(b)], in-phase os-
cillations emerge from the center of the system. Figure 4(c)
shows a different kind of in-phase oscillation, which is
governed by the poles of the system. Finally, Fig. 4(d)
shows a traveling wave that leads to antiphase oscillations
of the poles, similarly to what was found in the one-
dimensional case. The traveling wave alternates periodi-
cally and slowly its direction of motion, from left to right
and vice versa (with a period larger than the time span
shown in Fig. 4). In spite of these alternations, the poles

oscillate periodically and in perfect antiphase. The dimen-
sionless parameters leading to this regime, given in the
caption of Fig. 4, correspond to reasonable biological
values when turned into dimensional units. For instance,
just by assuming a bacterium of length L ’ 4 �m, it is
found that l0 ’ 2:28 �m and l1 � 1:88 �m.

Conclusions.—We have reported a minimal mechanism
that generates pole-to-pole oscillations in nonactive elon-
gated media. The mechanism relies on the interaction of
the system’s bulk with an excitable (nonoscillatory) mem-
brane and can be understood analytically for one-
dimensional bulks making use of a phase-plane picture of
the membrane’s excitability. Both in-phase and antiphase
oscillations can be observed. In the case of a two-
dimensional bulk, antiphase dynamics is associated with
a traveling wave that periodically reverses its propagation
direction. This could be a generic mechanism leading to
spatiotemporal oscillations in systems limited by active
boundaries, such as cells.
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(a) (b) (c) (d)

FIG. 4 (color online). Temporal series of snapshots of V in two
dimensions. (a) Steady-state solution. (b), (c) In-phase periodic
oscillations. (d) Antiphase periodic oscillations and traveling
wave. The values of the parameters are L1 � 15:5, L1=L2 �
3:4, DU � DV � 0:1, �V � 0:00124, �U � 10�4�V , ku �
kv 
 k, and � � 0:015. The different regimes are obtained
varying k: (a) k � 0:03; (b) k � 0:08; (c) k � 0:095;
(d) k � 0:11. Each snapshot is taken every �t � 10.
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