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In this Letter we show how, for small values of the Fermi energy compared to the spin-orbit splitting of
Rashba type, a topological change of the Fermi surface leads to an effective reduction of the dimension-
ality in the electronic density of states in the low charge density regime. We investigate its consequences
on the onset of the superconducting instability. We show that the superconducting critical temperature is
significantly tuned in this regime by the spin-orbit coupling. We suggest that materials with strong spin-
orbit coupling are good candidates for enhanced superconductivity.

DOI: 10.1103/PhysRevLett.98.167002 PACS numbers: 74.62.�c, 72.10.�d, 72.20.Dp, 72.25.�b

Spin-orbit (SO) coupling arising from the lack of inver-
sion symmetry plays a leading role in the field of spin-
tronics [1]. One of the main goals in this field of research is
the possibility of tuning the electron spin properties by
means of electrical fields [2]. With this aim in mind, differ-
ent features have been investigated, such as spin relaxation
[3], magnetoconductance [4], spin-Hall currents [5], and
the properties of a superconducting phase [6,7]. As a
general rule, the SO coupling is assumed to be much
smaller than other relevant energy scales, in particular,
the electronic dispersion, so that the infinite bandwidth
limit is often employed. However, this same assumption
is becoming more suspect due to the steady report of
materials with increasing SO coupling, like HgTe quantum
wells [8], or the surface states of metals and semimetals
[9,10]. This steady progress prompts us to wonder how the
properties of SO systems are modified when the Rashba SO
coupling E0 (defined below) is no longer the smallest
energy, in particular, when E0 is the same order or larger
than the Fermi energy EF. Although not yet achieved, this
limit can be probably reached in the near future, as sug-
gested by the recent report of a E0 as large as E0 ’
220 meV in bismuth-silver surface alloys, where EF can
be tuned by Pb doping [11]. Other promising candidates
from this perspective belong to the family of noncentro-
symmetric superconductors CePt3Si [12,13], Li2Pd3B,
Li2Pt3B [14,15], where E0 ’ 30–200 meV.

In spite of its clear interest, the possibility of having
novel interesting features in low-density systems, defined
by the condition EF & E0, has not been, in our opinion,
sufficiently investigated to date, and only a few studies
have been devoted to this problem. In Ref. [16], for in-
stance, the vanishing of the spin-Hall current in the limit
EF=E0 & 1 of Rashba disordered systems was shown not
to be related to the vanishing of the vertex function but
rather to the cancellation between on-Fermi surface and

off-Fermi surface contributions. Another interesting effect
was also pointed out in Ref. [17]: there the spin relaxation
time �s for EF � E0 was shown to be proportional to the
electron scattering time �, in contrast with the standard
Dyakonov-Perel behavior [18]. Interesting effects con-
nected to the change of the Fermi surface topology for
EF=E0 � 1 were also pointed out in Ref. [19] in relation to
the disorder-induced localization.

The aim of this Letter is to explore in detail a fun-
damental feature arising from the topological change of
the Fermi surface in low-density SO Rashba systems. We
show that in this situation the enhanced phase space
available for the electronic excitations gives rise to a
SO-induced change of the electronic density of states
(DOS) which can be described in terms of an effective re-
duced dimensionality. We discuss the consequences of this
scenario on the superconducting instability criterion for
both two- and three-dimensional Rashba systems. We
show that, in contrast with the low SO coupling case
EF=E0 � 1, the SO coupling in the EF=E0 & 1 regime
systematically enhances the superconducting critical tem-
perature, providing evidence that the lack of inversion
symmetry can be remarkably beneficial for superconduct-
ing pairing.

We begin our analysis by considering the Rashba model
[20], which describes the linear coupling of conduction
electrons with a SO potential of the formHSO � ��kx�y �
ky�x�, where �x, �y are Pauli matrices and � is the Rashba
coupling constant. For two-dimensional (2D) systems, a
Rashba SO coupling arises from the asymmetric confining
potential, while in bulk three-dimensional (3D) com-
pounds it originates from the lack of the z-axis reflection
symmetry, as in CePt3Si. The SO coupling is reflected in an
energy splitting of the two helicity bands. Assuming a
parabolic band, the resulting electronic dispersion, for 2D
and 3D cases, reduces to
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, kz is the momentum along the z

direction, m	 is the effective electron mass, and k0 �
m	�=@2 is the Rashba momentum. The dispersion for the
2D case is shown in Fig. 1(a), which can easily be gener-
alized in the 3D case by taking into account the kz disper-
sion. The two horizontal dashed lines correspond to the
Fermi level for high-density and low-density regimes de-
fined as EF > E0 and EF < E0, respectively, where E0 �
@

2k2
0=2m	 is the energy of the k � 0 point with respect to

the bottom band edge at k � k0 [see Fig. 1(a)].
Density of states.—Several studies in the literature have

focused on the high-density regime, EF � E0, where the
two Fermi surfaces belong to different helicity bands with
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where the Fermi velocity jvF;�j �
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is indepen-
dent of the helicity number s � � and the Fermi surfaces
are SF;� � 2�kF;�. Hence the total DOS in the EF > E0

regime N2D�EF� � m	=��@2� is identical to the one in the
absence of SO coupling. A similar result applies for the 3D
case where, from Eq. (2), the corresponding DOS can be
obtained as
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the EF=E0 � 1 limit.

Let us now consider the EF � E0 regime. In this case the
Fermi level intersects only the lower E��k� band and the
topology of the Fermi surfaces drastically changes. In the
2D case, for instance, only the annulus that lies between
two Fermi circles of radii kF;1 and kF;2 with kF;1�2� �����������������
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� belonging to the same helicity

band, is filled [Fig. 1(b)], and the inner Fermi surface is
inwards oriented. We can still employ Eq. (3) by summing
over the two Fermi surface indices s � 1; 2. Using jvF;sj ������������������
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which is valid as long as EF � E0 [Fig. 1(c)]. Most pecu-
liar is the square-root divergence for EF ! 0 that is remi-
niscent of one-dimensional behavior [11,17,19,21]. We
relate such a feature to the nonvanishing in the low-density
limit of the Fermi surface which remains finite, SF;s /������
E0

p
, while at the same time, the Fermi velocity vanishes

as
������
EF
p

. The behavior of Eq. (5) has to be compared with
the � � 0 case where also the Fermi surface shrinks as������
EF
p

and the electron DOS has a nondivergent steplike
behavior in the EF ! 0 limit [22].

A similar reduction of effective dimensionality in the
electron DOS appears also for the 3D systems in the EF �
E0 regime. In this case the Fermi surface has a toruslike
topology as shown in Fig. 1(d), with major radius k0 ����������������������
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and minor radius
����������������������
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p
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more Eq. (4) we get for EF � E0:
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Hence the SO coupling changes qualitatively the low-
density behavior of the 3D DOS providing a finite steplike
behavior [Fig. 1(e)] in contrast with a standard 3D electron
gas whose DOS vanishes as

������
EF
p

.
Cooper instability.—The above described reduction of

effective dimensionality sheds a new light on the possible
existence of a superconducting phase in the low-density
regime of SO systems. To illustrate this point let us con-
sider the classical problem [23] of a Fermi surface insta-
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FIG. 1 (color online). (a) Electronic dispersion in the presence
of SO coupling. For EF � E0 (high-density regime) the two
Fermi surfaces belong to different helicity bands, while for EF �
E0 (low-density regime) the Fermi surface exists only on the E�k
band. (b),(c) Fermi surface and DOS, respectively, in the low-
density regime for the 2D case. (d),(e) Fermi surface and DOS in
the low-density regime for the 3D case.
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bility toward the formation of a Cooper pair:

 1 � V
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0
d�N���

1

2�
�
; (7)

where �> 0 is the binding energy of the pair and where
we introduce a standard BCS cutoff!0. V is the strength of
the effective attractive interaction which we consider here
for simplicity in the s-wave channel. Since the supercon-
ducting Cooper pairing is essentially a Fermi surface in-
stability, the strength of the bound state and its very
existence is intimately related to the phase space of the
available electronic excitations. For instance, as is well
known, in the low-density limit of 3D systems, where
N3D��� � a

���
�
p

, Eq. (7) predicts a finite critical coupling
Vc � 1=�a

������
!0
p
� below which no bound state exists.

This result changes drastically for finite SO couplings
where, as seen above, the electron DOS behaves now as an
effective 2D system. Using Eq. (6) in Eq. (7) we get for
E0 >!0 and weak coupling [24]:
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which explicitly shows that, contrary to the usual 3D case,
the Cooper instability exists no matter how weak V is, with
an exponential dependence on the SO coupling.

A similar change of the character of the Cooper insta-
bility occurs also in the 2D case. Indeed, in the absence of
SO coupling, one would get the BCS-like result � �
2!0 exp��2�@2=m	V�. On the other hand, due to the
strong 1D-like divergence of the electron DOS, Eq. (5),
the binding energy for finite SO coupling reads now
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where the bosonic energy !0 is no longer present and the
relevant energy scale is provided by E0. Note also the
quadratic dependence of � on V, and the absence of an
isotope effect for the phonon-mediator case.

Superconducting critical temperature.—The above dis-
cussion of the single Cooper pair problem will be now a
guide to the following investigation of the superconducting
transition for finite (low) densities in fully interacting
systems. In order to focus on the effects that the SO
modulation of the DOS has on the superconducting critical
temperature, we consider a Rashba-Holstein model where
the SO coupled electrons interact with dispersionless bo-
sons with energy !0 through an s-wave k-independent
coupling with matrix element g [25]. It can be shown
that in this case only the singlet symmetry appears, without
mixed even or odd order parameter and singlet-triplet
symmetry, which is instead expected for a generic
k-dependent interaction in the lack of inversion symmetry
[6,7]. Since the reduced dimensionality of the electron
DOS is not peculiar to the s-wave singlet component but
applies as well to the more complex anisotropic singlet-
triplet case, this simplification is not expected to affect the

general validity of our results. We evaluate thus the critical
temperature Tc within the Eliashberg framework, which
includes retardation effects, properly generalized in the
presence of SO coupling.

In Figs. 2(a) and 2(c) we show the superconducting
critical temperature Tc as a function of the Rashba energy
E0 for different electron densities n. In the figure the lower
density values, n � 1013 cm�2 and n � 1020 cm�3, corre-
spond to Fermi energies EF ’ 24 meV and EF ’ 46 meV
for the free electron gas in 2D and 3D, respectively. In
addition, for a practical purpose one needs to introduce a
finite bandwidth cutoff Ec, which is physically provided by
the size of the Brillouin zone kc. We set Ec � 2000
(430) meV which gives kc ’ 0:72 �0:33� �A�1 for the 2D
(3D) case. We get thus an electronic DOS per unit cell
which, for the density values reported above in the ab-
sence of SO coupling, is N2D�EF � 24 meV� ’
5� 10�4 meV�1 and N3D�EF � 46 meV� ’ 12�
10�4 meV�1. For all cases !0 has been fixed at !0 �
20 meV and g � 5!0. With these values we obtain dimen-
sionless coupling constants � � 2g2N�EF�=!0, respec-
tively, �2D�24 meV� ’ 0:5 and �3D�46 meV� ’ 0:6.
These small values of � justify the use of the mean-field-
like BCS and Eliashberg theories even for the highest
values of the adiabatic ratio !0=EF � 0:8 considered
here. Figures 2(a) and 2(c) show a significant increase of
Tc as a function of E0, in particular, for low densities where
a small E0 is sufficient to enter into the EF & E0 regime.
This holds true for both 2D and 3D systems, and the
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FIG. 2. (a),(b) Superconducting critical temperature Tc as a
function of the Rashba energy E0 and of the electron density n,
respectively, for the 2D case. (c),(d) Same quantities for the 3D
system.
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enhancement of Tc can be as high as 300% with respect to
the E0!0 limit. Assuming typical values !0�20 meV
and E0 � 30–200 meV, we get E0=!0 � 1–10. Also inter-
esting is the study of Tc as a function of the electron density
n, as reported in Figs. 2(b) and 2(d), which show how the
Tc vs n behavior reflects the effective reduced dimension-
ality of the underlying DOS. For the 2D case, for instance,
the Tc vs n behavior presents strong peaks for E0 � 0
which reflects the 1D-like singularity of the DOS. Note,
however, that the retarded electron-boson interaction gives
rise to dynamical one-particle renormalization effects
which smear the singularity of the bare DOS.

Similarly, in the E0 ! 0 limit of the 3D case Tc drops as
the density n is reduced due to vanishing of N3D�EF� /������
EF
p

. On the other hand, the 2D character of the DOS with
E0 � 0 gives rise to an almost flat dependence of Tc for
sufficiently low n, with a critical temperature tuned by the
Rashba energy E0. Both the 2D and 3D cases thus show
that the lack of inversion symmetry not only affects the
character of the order parameter, as discussed in several
works [6,7,13], but in principle can also lead to a substan-
tial enhancement of the superconducting pairing in the low
n regime.

Let us discuss now the relevance of our results in the
context of real materials. Concerning the 2D case, for
instance, surface states and low dimensional heterostruc-
tures could be natural candidates for the search of en-
hanced superconductivity. In particular, the issue of
surface superconductivity [26] has recently been discussed
in relation with systems like alkali-doped WO3 [27] where
evidence of superconductivity confined to the surface has
been provided. Interesting perspectives are also given by
the noncentrosymmetric superconductors. In the Li2Pd3B
and Li2Pt3B compounds, in particular, a large SO coupling
is accompanied by a strong electron-phonon interaction
[28]. In this case, of course, as in the heavy fermion
CePt3Si case, a proper generalization of the present results
to the case of nonparabolic bands is needed. Before con-
cluding, it is worth discussing the possibility of establish-
ing an effective attraction even in the presence of a strong
Coulomb repulsion. As is well known, in common super-
conductors this is achieved by the dynamical screening of
the Coulomb repulsion which is related to the different
electronic (EF) and bosonic (!0) energy scales and which
is operative in the range !0=EF < 1. This gives rise to a
lower limit for EF, which is, however, almost always
fulfilled in systems of interest where E0, EF � 102 meV,
and !0 � 101 meV.

In summary, we have examined the impact of a strong
Rashba SO interaction on the superconducting pairing in
weakly coupled electron-boson systems. The primary re-
sult is an effective reduction in dimensionality of the low
energy electronic DOS which increases significantly the
phase space at the Fermi level. This allows binding in the
zero density limit for arbitrarily weak interactions even for
3D systems. Full numerical calculations illustrate that the

enhanced DOS has a remarkable impact on the supercon-
ducting critical temperature in a wide range of parameters.
We suggest a search for higher Tc in materials with large
SO coupling. In systems where electron density can be
varied, one should be able to test some of the trends
reported here.
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