
Impact of Space-Energy Correlation on Variable Range Hopping in a Transistor

J.-F. Morizur,1 Y. Ono,1,* H. Kageshima,1 H. Inokawa,2 and H. Yamaguchi1
1NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan

2Research Institute of Electronics, Shizuoka University, 3-5-1, Johoku, Hamamatsu, 432-8011, Japan
(Received 15 December 2006; published 19 April 2007)

Hopping conduction in transistors, i.e., under a transverse electric field, is addressed using percolation
theory with a space-energy correlation in the density of states of the impurity band. The computation of
the percolation threshold over an extended range of correlation parameters enables us to derive a formula,
which, while giving the classical results in the low field limit, describes the emergence of a specific
variable range hopping in the high field case. An application of this formula to experimentally extract the
localization radius is also proposed.
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Hopping [1,2] has been one of the central issues of
charge transport and, recently, attracts renewed attention
from viewpoints of future nano/quantum information pro-
cessing, a part of which requires a deep understanding of
hopping (or tunneling) via impurity levels in field-effect
transistors [3]. Percolation theory [1] applied to disordered
systems has proved powerful in describing the conduction
characteristics of hopping phenomena. This theory has
shown that the density of states (DOS) properties, such
as spatial dimension, energy bandwidth, and strength of the
Coulomb interaction, which can create a gap in the DOS
around the Fermi energy, have direct influences on con-
duction characteristics such as temperature and concentra-
tion dependence [4,5]. However, the existing theory is not
applicable for a situation with transverse electric field
despite its great importance already demonstrated by
some experimental studies using transistors [6–8].

Here, we investigate the hopping transport in a high
transverse field based on the percolation theory with a
correlation between the spatial and energy dimensions,
and show that the hopping properties in transistors are
qualitatively different from the ones in ordinary bulk ma-
terials. After presenting the necessary framework of per-
colation theory, we show that a nonzero gradient in the
average energy of sites significantly reduces the effect of
the Coulomb interaction on the DOS. Then, we show the
results of the computations and derive a physically mean-
ingful formula for the percolation threshold. This formula
predicts the transition from a three-dimensional (3D) to a
specific two-dimensional (2D)-like hopping as the gradient
of energy is increased. We also propose, on the basis of
these results, a new experimental method to determine the
localization radius of carriers in localized states.

Miller and Abrahams’ model [9] is used to derive proba-
bility Pij that one electron jumps from one site to another.
This probability can be written as Pij / exp���ij�, where

�ij �
2Rij
a0
�

"ij
kT if the wave function of the charge is iso-

tropic. Here, Rij is the distance between the two sites, a0

the localization radius, and "ij can be expressed as "ij �

1
2 �j"i ��j � j"j ��j � j"i � "jj�, with � the Fermi en-
ergy, "i and "j the energy of site i and j, respectively [10].
To compute the total resistance of the network, percolation
theory can be used [1]. It involves finding the percolation
threshold �c. For a certain dimensionless �opt, one can
consider the networks of sites created under the condition
�ij < �opt for all pairs of i and j. The �c is the smallest �opt

that allows a network of sites to become infinite.
Percolation theory simply yields the results that the con-
ductivity of the network is proportional to exp���c�.
Computing �c is possible in a ‘‘dimensionless space’’,
which is a 4D (one energy and three spatial coordinates)
space with dimensionless variables. We introduce a length
scale Ropt �

a0�opt

2 and an energy scale "opt � kT�opt, and
then the bonding criterion �ij < �opt is expressed as sij �

eij < 1. The spatial term is sij � jj ~si � ~sjjj with ~si �
~Ri
Ropt

.

The energy term is eij �
1
2 �jeij � jejj � jei � ejj� with

ei �
"i��
"opt

. The only sites able to bond are the sites at

which jeij< 1, which is a necessary condition for the
bonding criterion and thus can be used as a boundary
condition when solving the problem.

If we consider that the DOS around the Fermi energy is a
constant g���, i.e., the case of Mott’s variable range hop-
ping (VRH), the number of sites N��opt� in a cube of side A
in the dimensionless space with jeij< 1 is

 N��opt� � A32g���"optRopt
3 � A3 1

4
g���kTa0

3�opt
4: (1)

We compute N��opt� � Nc necessary in the dimensionless
cube of side A with jeij< 1 to reach percolation [1]. As a
result, we find �c � �

4nc
a0

3kTg����
1=4, where nc � limA!1

Nc
A3 is

called the critical concentration [1], at which percolation
first occurs. The same kind of computation can be done in
the 2D case, which yields

 �c �
�

2~nc
a2

0kT~g���

�
1=3
; (2)

PRL 98, 166601 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
20 APRIL 2007

0031-9007=07=98(16)=166601(4) 166601-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.98.166601


where ~nc � limA!1
~Nc

A2 is the (2D) critical concentration
and ~g��� is the 2D DOS [11]. In order to accept the DOS
constant, the condition w� 2kT�c, with w the typical
width of the DOS, must be true [4]. The above derivations
are thus done considering that w is infinite.

Let us now focus on our specific model gsp for a DOS,
which is presented in the inset of Fig. 2(a). We introduce a
gradient in the energy of sites, which is set perpendicularly
to the electron flow, in order to respect the linear response
theory at the base of the Miller Abrahams’ model. We
assume that this gradient is constant. To that extent, we
consider the simple DOS gsp�"; z� � g0 on the range j"�
czj<w=2 and gsp�"; z� � 0 outside, where c is the slope
of the variation of the average of the energy with z.
Comparing this model to a real DOS, such as that for an
impurity band, w accounts for the energy bandwidth while
c represents the energy shift resulting from a nonzero
transverse electric field. Introducing a finite bandwidth w
makes our model more general than the constant-DOS
models previously discussed above, since our model is
not limited by the condition w=2� kT�c. The structure
of gsp introduces a linear correlation between the two
random variables "i and zi. Parameter c is the average
ratio h"i=zii, while parameter w (or equivalently w=c)
defines the strength of the correlation between the two
variables. In the limit case when w! 0, the position of a
site along the z axis gives directly its energy "i � czi. In
such a case, we will observe a strong dependence of the
percolation threshold upon c. As w is increased, this de-
pendence will be reduced.

The above gsp is assumed to be constant around the
Fermi energy at z � 0. Before exhibiting the computation
results of the percolation threshold, we must explain why
this simple DOS is coherent with the Coulomb interaction
issue. According to Refs. [5,12], the Coulomb interaction
leads to a modification of the DOS in order to ensure that,
for any given pair of sites i and j, with "i > �> "j, the

condition, "i � "j �
q2

4��Rij
> 0, stands true, where q is a

unit of charge and � the permittivity. This condition im-
plies a vanishing of the DOS for energies close to the Fermi
energy, and at first sight contradicts our model DOS. Let us
explain on which conditions the constant DOS around the
Fermi energy is relevant. The above condition with our
specific gsp is necessarily fulfilled for sites that are far
enough away on the z axis. The relations "i > czi � w=2

and "j < czj � w=2 give the sufficient condition, c�zi �

zj� � w�
q2

4��Rij
> 0. If we consider the average distance

Rd to the closest site, the average distance on the z axis to
the closest site is Rd=

���
3
p

, considering that the spatial
distribution of sites is random and isotropic. As a result,
the following condition for c allows us to neglect the
Coulomb gap in the DOS: c Rd��

3
p � q2

4��Rd
� w. It is easily

satisfied. For example, considering impurity conduction in

a doped Si with a doping density ofNd � 9:0� 1017 cm�3

andw � 10 meV [13], the condition can be written as c�
3:6 meV=nm, which is achievable in experimental condi-
tions, if the Si is put in a transistor structure [8].

To visualize this analytical condition, a small computa-
tion work was performed, and the results are shown in
Fig. 1. We considered 10 000 randomly distributed sites in
a cube with 220-nm sizes, which gives a density of Nd �
9:0� 1017 cm�3. Their energy is random on a band of
width w � 10 meV. We then checked, among all the pos-
sible pairs in the sample, which ones should not exist, i.e.,
which ones do not respect the condition, "i � "j �
q2

4��Rij
> 0. For every pair that does not respect the condi-

tion, one (chosen randomly) of the two concerned sites is
deleted. Although this is not a complete process for deter-
mining the DOS, which requires a self-consistent calcula-
tion, this method still gives an idea of the extent of the
influence of the Coulomb interaction on the DOS. The
remaining number of sites, which constitute a physically
consistent DOS, is presented in Fig. 1(a). We then in-
creased the slope, keeping the impurity bandwidth con-
stant. This gives the results in Figs. 1(b)–1(d), for slopes of
0.1, 1.0, and 4:0 meV=nm, respectively. The physical
meaning of the disappearance of the gap is simple: under
a high electric-field, the condition "i � "j �

q2

4��Rij
> 0 is

rarely violated even for two sites close to each other. The
conclusion from this calculation is that the Coulomb gap
can effectively be neglected if the condition, c Rd��

3
p �

q2

4��Rd
� w, is respected.

We now show the computational results for the perco-
lation threshold. Our specific DOS gsp translates in the
dimensionless space into a constant DOS on the range
jei � Csizj<W \ jeij< 1 and null outside this range.
The dimensionless coefficients C and W have the form
C � ca0

2kT and W � w
2kT�opt

. We consider 0< six;y < A, and

the boundary condition for siz is implicitly included in
jei � Csizj<W \ jeij< 1. We then compute the neces-
sary Nc�C;W� for A � 7 in order to reach percolation [14].
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FIG. 1 (color online). Computed DOS. A clear Coulomb gap is
observed in (a) while it is barely perceivable in (d).
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The results are averaged over 40 realizations for each value
of C and W (Figs. 2 and 3.). Notice that Nc�C;W� with 0<
six;y < A is given by Nc�C;W� � 2A2Ropt��c�

2"opt��c��
w
c g0 � A2a0

2�c3kT w
2c g0. This is a function of parameters

C and W, and, to that extent, strongly differs from Eq. (1).
We propose a physically meaningful formula to under-

stand the raw data produced by the computation.
Considering

 

Nc�C;W�

A2
� �1

W
C
� �2

1

C
� �3

�����
W
p

C
� �4; (3)

which is equivalent to a0
3�4

ckTg0 � 2�1 � 4�2
kT�c
w �

2
���
2
p
�3�

kT�c
w �

1=2 � 2�4
ca0�c
w , a fitting was performed in par-

allel on the two ranges exhibited in Figs. 2(b) and 3 in order
to derive the numerical coefficients �i. This fitting proce-
dure yields �1 � 4:8 �2 � 1:0, �3 � �1:3, �4 � 4:3.

In what follows, we thoroughly analyze the above for-
mulation. First, the low-slope limit case (C� 1) can be
understood using classical results for hopping in no-slope
situation. In Mott’s VRH case, i.e., on the condition W �
1, direct computation yields �c � �

10:0
a0

3kTg0
�1=4, while our

formulation fitted on our computed data gives �c �

� 9:7
a0

3kTg0
�1=4. Mott’s VRH is thus well described by our

model, and the numerical coefficient is reproduced, even
though no extrapolation for A infinite was performed. In
the nearest neighbor hopping (NNH) case [15], i.e., for
W � 1, while direct computation gives �c � �

3:2
a0

3Nd
�1=3, we

extract �c � �
4:0

a0
3Nd
�1=3, again reflecting this limit case. The

third important term in the low-slope limit is�3:6�kT�cw �
1=2.

This term accounts for the gradual transition [4] between
the two limit cases, W � 1 and W � 1, in the low-slope
situation. Indeed, this term cannot be neglected only when
W 	 1 with regards to W and 1. To that extent, it intro-
duces a correction on the transition range from Mott’s
VRH to NNH and this is why only this term has a negative
coefficient. The three discussed terms account for the terms
�1

W
C � �2

1
C� �3

����
W
p

C in Eq. (3). No higher order in 1=C is
possible, since it would be dominant when C tends to 0 and
would not reflect the classical results for Mott’s VRH and
NNH. Figure 2(a) shows the particular linear dependence
of Nc=A2 in 1=C.

We next study the high-slope case, C� 1 and C� W.
The computation results, exhibited in Fig. 3(a), strongly
suggest that a constant must be added to �1

W
C � �2

1
C�

�3

����
W
p

C in Eq. (3) to reproduce the offset observed there.
Terms with smaller exponent in C (i.e., with a power law of
Co, where �1< o< 0) could be introduced in Eq. (3) to
allow for more precise fitting, but the already sufficiently
good fitting of the computation results indicates that these
corrections are small. Indeed, if we consider the computed
values of Nc=A2 for C higher than 5 and smaller than 0.2,
the average relative error is 4%, while, if we consider our
whole computation space, the average relative error is 8%.
Since Nc=A2 is obviously a constant in the high-C limit,
higher orders in C are not allowed in the formula by our
computation results. As a conclusion, Eq. (3) has a strong
physical background in the low-slope case, and also clearly
indicates the existence of an additional term in the general
case.

Let us now discuss in more detail this new term found in
our percolation threshold. In the high-slope case of C� 1
and C� W, the constant term in Eq. (3) gives
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FIG. 3 (color online). Computation results for Nc=A2 against C
and W, for the high-slope limit. (a) Computation results and
(b) values extracted from Eq. (3). An offset in Nc=A2 is visible.
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FIG. 2 (color online). Computation results for a wide range of
1=C. (a) Nc=A2 against 1=C, extracted for constant W’s. Dots are
computation results and lines are values from Eq. (3). The
position of the planes where W is constant is shown in (b).
(b) Nc=A2 against W=C and 1=C. Crosses are computation
results and dots are values from Eq. (3). The planes of constant
W for (a) are exhibited. Inset in (a): Model DOS g�"; z�. The
current flows perpendicularly to the page.
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 �c �
�

8:5c

a0
2kTNd

�
1=3
; (4)

where Nd � g0w is the site density, and the coefficient 8.5
can be interpreted as a critical concentration in this limiting
case. The 1=3 exponent, in contrast to an ordinary 1=4, is
seen as the collapse of the correlated spatial and energy
dimensions together. That is why Eq. (4) is similar to the
result of a 2D percolation problem, Eq. (2). Still, funda-
mental differences from 2D VRH are observed.

First, the temperature range is modified. Indeed, in
2D VRH, the condition for the observation of the 1=3
exponent in the temperature-dependence is w� 2kT�c.
Here, the conditions are w� ca0�c and kT � ca0.
Fundamentally, what happens is that the limitation intro-
duced by a finite bandwidth disappears due to its stretching
by the slope. At the same time, the energy boundary kT�c
for the participating states in the hopping process is intro-
duced in the lateral displacement along the z axis. Thus, the
spatial dimension z and the energy scale " collapse to-
gether, sharing their properties and giving way to a 2D-like
hopping temperature dependence.

Even more important is the difference in the dependence
on the DOS shape. In the case of no-slope 2D VRH [1,11],
according to Eq. (2), the percolation threshold strongly
depends upon ~g���. In the case of a high slope, the
percolation threshold, Eq. (4), only depends on the site
density Nd and on the slope c. Indeed, for high slopes, the
energy difference between two sites will be dominated by
the difference induced by the slope. To that extent, the
actual shape of the energy dependence of the DOS will be
of small importance, since the slope will tend to average it.
That is why, in the case of high slopes, the energetic shape
of the DOS is not important, and computing the percolation
threshold for any other shape with the same typical widthw
would give the exact same result in the high-slope limit.

The independence of the percolation threshold on the
shape of the DOS is of tremendous importance in experi-
mental applications, especially in the evaluation of the
localization radius, since determining the precise energy
dependence of the DOS of the impurity band is difficult,
whereas the mere extraction of Nd can be done by many
means [16]. If we consider impurity hopping in a field-
effect-transistor structure [8], with enough gate bias so that
the transverse electric field induced gives kT � ca0 and
w� ca0�c, a0 can be expressed as a0

2 � 2�4
@c
@V �

�Nd
@T0

@V �
�1, where V is the gate bias and T0 a characteristic

temperature derived from temperature-dependence mea-
surement. A precise calculation of @c

@V is possible [8,17],
allowing an accurate extraction of a0. This method gives a
new and simple experimental way to measure the localiza-
tion radius without the need to progressively add layers of
matter to the sample as was done in [18]. The above two

conditions w< ca0�c and kT < ca0 will both be met at
10 K in a buried-channel silicon-on-insulator (SOI) field-
effect transistor [8] doped with phosphorus by Nd 

1018 cm�3, for a voltage difference of 40 meV on a SOI
thickness of 10 nm.

In summary, the correlation between the energy of a site
and its position, such as induced by an electric field,
changes the fundamental properties of hopping transport
in semiconductors. The merging of the spatial and energy
coordinates modifies the temperature dependence and
makes the conduction insensitive to the DOS structure.
This predicts the different behaviors for hopping in field-
effect transistors from that in a bulk semiconductor and
suggests a new way to derive experimentally the localiza-
tion radius of the impurity electrons.
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