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Turbulent Diamagnetism in Flowing Liquid Sodium
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The nature of Ohm’s law is examined in a turbulent flow of liquid sodium. A magnetic field is applied to
the flowing sodium, and the resulting magnetic field is measured. The mean velocity field of the sodium is
also measured in an identical-scale water model of the experiment. These two fields are used to determine
the terms in Ohm’s law, indicating the presence of currents driven by a turbulent electromotive force.
These currents result in a diamagnetic effect, generating magnetic field in opposition to the dominant
fields of the experiment. The magnitude of the fluctuation-driven magnetic field is comparable to that of

the field induced by the sodium’s mean flow.
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The magnetic fields of stars and planets are generated by
the motion of an electrically conducting plasma or liquid
metal in the star or planet’s interior [1]. The motion of the
fluid across an existing seed magnetic field generates a
motional electromotive force (EMF) that drives currents,
leading to a self-generated magnetic field. While large
scale flow may induce much of the magnetic field, there
is another means by which magnetic field may be gener-
ated: the interaction of velocity and magnetic field fluctua-
tions [2]. If the magnetic and velocity fields are separated
into their mean (taken to be the temporally averaged value)
and fluctuating components, B = (B) + Band V = (V) +
V, then the mean electric current obeys an Ohm’s law of
the form

(J) = o((E) + (V) X (B) + (V X B)), (1

where (J) is the average current density, o is the conduc-
tivity of the fluid, and (E) is the average electric field.
There are two significant source terms in Eq. (1): (V) X
(B) represents the EMF associated with the mean part of
the velocity and magnetic fields, while (V X B) represents
the EMF generated by the fluctuating part of the fields;
velocity and magnetic field fluctuations can interact coher-
ently to generate mean currents.

The possibility of such a turbulent EMF has long been
recognized [2—4]. Much of its study has focused on those
currents generated by helical velocity field fluctuations
[5,6], and several non-simply-connected liquid-metal ex-
periments have been constructed to mimic such helical
flows [7,8]. However, gradients in the intensity of the
fluctuations can also generate currents. These currents
effectively expel magnetic flux from regions of high tur-
bulence to low, resulting in a diamagnetic effect [2,9—15].
Such flux expulsion may explain [16] the weak magnetic
field at the center of the galactic core [17] relative to the
core’s external flux tubes [18], as well as concentrations of
large scale toroidal magnetic field at the base of the stellar
convection zone [19-21]. However, since fluctuation-
driven fields cannot yet be isolated in astrophysical or
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geophysical settings, whether turbulent EMFs play a sig-
nificant role in the production of such magnetic fields
remains an open question.

In this Letter we present the spatial structure of such
fluctuation-driven currents, as measured in the Madison
Dynamo Experiment. The net result is a strong turbulent
diamagnetism, reducing the magnitude of the magnetic
field throughout the experiment. A previous Letter showed
that such currents must exist [22], but gave no information
about their structure. Here, direct measurement of the
experiment’s magnetic and velocity fields is used to ex-
plicitly examine the structure of Ohm’s law.

The Madison Dynamo Experiment is a 1 m diameter
sphere of flowing liquid sodium [23]. An axisymmetric
mean velocity field is generated within the sodium by a pair
of counterrotating impellers attached to shafts that enter
the sphere through each pole (with the shafts defining the
axis of symmetry). The flowing sodium is very turbulent,
with a kinetic Reynolds number Re ~ 107. The uncon-
strained geometry of the experiment allows fluctuations
in the velocity field to develop up to the scale of the device.
The fluctuating velocity field generates a fluctuating mag-
netic field by advecting the mean magnetic field of the
experiment.

The nature of Ohm’s law is explored by measuring the
magnetic-field-dependent terms in Eq. (1) to determine if
the induced magnetic field is due solely to the action of the
mean flow. An approximately uniform magnetic field is
applied to the flowing sodium using a pair of external
magnetic field coils, and the total magnetic field, applied
plus induced, is measured (the applied field is weak; the
velocity field is unaffected). The collection of magnetic
field data has been described previously [22]. Since both
the mean velocity and applied magnetic fields are axisym-
metric, the mean induced field is also axisymmetric (all
data presented in this Letter are axisymmetric). A spherical
harmonic expansion of the induced internal magnetic field
is fitted to the most probable values of the measured
magnetic field. Since the sphere is simply connected, to-
roidal magnetic field cannot be applied from outside the
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sphere; all toroidal magnetic field is due to electrical
currents flowing within the sodium.

For an impeller rotation rate of 1000 rpm, the most
probable measured induced magnetic field ranges from
1.2 times the magnitude of the applied field in the poloidal
direction, to 1.1 times in the toroidal direction [Fig. 1(a)].
The field reconstructed from the fit indicates that the
external poloidal magnetic field is dominated by a dipolar
component that opposes the externally applied magnetic
field [Fig. 1(b)]. The reconstruction also demonstrates that
the toroidal velocity field is effective at generating toroidal
magnetic field from the applied poloidal magnetic field.

To distinguish between currents due to the mean flow
and currents due to fluctuations, the mean velocity field of
the sodium must be known. To this end an identical-scale
water model of the sodium experiment has been con-
structed [24]. At the correct temperatures water and so-
dium have the same kinematic viscosity and similar
densities. Thus, the two fluids are nearly hydrodynamically
identical and water can be used to model flowing sodium.
The water model is a 1 m diameter sphere in which
impellers generate an axisymmetric mean velocity field.
Stainless steel tubes, identical to those containing the
internal Hall probes in the sodium experiment [23], enter
the flow at the same seven locations as in the sodium
experiment. Unlike the sodium apparatus, the water model
is outfitted with five windows that allow a laser Doppler
velocimetry system to directly measure the poloidal and
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toroidal components of the water’s velocity field. A spheri-
cal harmonic expansion of the velocity field is fitted to the
mean values of these measurements to determine the mean
velocity field of the flowing sodium. For an impeller rota-
tion rate of 1000 rpm, the measured velocity field data
yield a maximum poloidal speed of 2.5 m/s and a maxi-
mum toroidal speed of 3.9 m/s [Fig. 2(a)]. The flow is
counterrotating in the toroidal direction and the poloidal
flow rolls inward at the equator and outward at the poles
[Fig. 2(b)].

To determine the importance of fluctuations in the ex-
periment, Eq. (1) is separated into currents driven by the
mean flow and currents driven by fluctuations, (J) =

Devyxpy T Dyxpy,  where  Dyxpy = o(E)wxp +
(V X B)), and similarly for (Devyx(wy- The electric field
is separated into two parts so as to maintain V - (J) = 0 for
each source of current (the MHD approximation). The
measured mean fields are then used to explicitly calculate
(J)¢vyx(By» Which is then compared to the measured current
mo{J) = V X (B); the difference results in the current
associated with the fluctuations, (J)yxp)- Like the fit to
the measured magnetic and velocity fields, this calculation
is done in a spherical harmonic basis, and involves calcu-
lating the electrical potential of the experiment to deter-
mine the poloidal electric field, given an insulating outer
boundary (further details can be found in [25]). The mag-
netic fields due to these two sources of current are pre-
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FIG. 1 (color online).

Induced magnetic fields measured in the Madison Dynamo Experiment. (a) Most probable measured poloidal

and toroidal field values, scaled to the magnitude of the applied field (50 G), for an impeller rotation rate of 1000 rpm. The fit (solid
lines) represents values predicted by a spherical harmonic expansion fit to the data (diamonds). Error bars represent the rms fluctuation
levels of the signals. (b) The reconstructed field, with the axis of symmetry oriented horizontally. Streamlines of the poloidal field are
in the upper hemisphere and the toroidal field strength is in the lower hemisphere. Measurement positions are indicated with dots, and

the impeller positions are indicated with rectangles.
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FIG. 2 (color online).

Velocity fields measured by laser Doppler velocimetry in the water model of the Madison Dynamo

Experiment. (a) Mean measured velocity field as a function of radial position, for an impeller rotation rate of 1000 rpm. (b) The
reconstructed field. The poloidal flow rolls inward at the equator and outward at the poles. Two toroidal cells rotate in opposing
directions in each hemisphere. In both panels the conventions are as in Fig. 1.

sented in Fig. 3. If no fluctuation-driven currents were
present (i.e., the measured magnetic field is solely ex-
plained by (J)vyx)), then the measured magnetic field
[Fig. 1(b)] would be the same as the field due to the mean
velocity field [Fig. 3(a)]. Inspection of these two figures
reveals that this is not the case. The prominent external
dipole component of the measured poloidal magnetic field
is completely absent from the magnetic field due to the
mean velocity field, since the mean axisymmetric velocity
field is incapable of producing it [22]. Also, the magnitude
of the measured toroidal magnetic field is significantly
weaker than the toroidal field due to the mean velocity
field interacting with the measured magnetic field. Clearly,
the inductive action of the mean flow alone is insufficient
to explain the measured fields: fluctuations must be gen-
erating significant magnetic field.

The magnetic field generated by the fluctuations has
several prominent features [Fig. 3(b)]. First, there is a
dipole component that dominates the magnetic field out-
side the sphere, in the direction opposite the applied field.
This is the source of the measured external dipole moment.
Second, the toroidal field induced by the fluctuations is in
opposition to the field induced by the mean velocity field
interacting with the measured magnetic field. Thus, the
field induced by the fluctuations is diamagnetic with re-
spect to the dominant poloidal and toroidal fields within the
experiment. The effect is important to the overall magnetic
field of the experiment, as the fluctuation-driven field is a
significant fraction of both the field induced by the mean

flow, and the applied field. The strength of the toroidal
diamagnetic field near the poles is about 50% of the
magnitude of the field induced by the mean flow, while
the fluctuation-driven dipole component is 20% of the

B<V> x(B)
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FIG. 3 (color online). Magnetic field due to the terms in Ohm’s
law. (a) The magnetic field (B)y)x ) calculated from the mean
measured velocity field interacting with the mean measured
magnetic field (the sum of the induced and the applied fields).
Note the lack of induced external dipole moment. (b) The mean
magnetic field (B)y 5, due to the EMF associated with the
fluctuations. The poloidal external field displays the measured
dipole component, in opposition to the applied field. The toroidal
field is in opposition to the field induced by the mean flow of
sodium.
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magnitude of the applied field. The fluctuation-driven po-
loidal field reduces the total poloidal flux through the
equatorial plane by 10%.

Characterization of the fluctuations which lead to this
turbulent EMF requires direct measurement of V and B.
Since such measurements are not currently available, it is
not yet possible to determine whether the observed dia-
magnetism is due to gradients in fluctuation levels, helical
turbulence, or some other effect. Since the fluctuation
levels of the experiment are greatest near the impellers,
and weakest near the sphere’s surface, flux expulsion due
to gradients in turbulence levels is a natural candidate to
explain the observed diamagnetism, though it is not the
only possible explanation.

We note that the structure of the diamagnetic field is
qualitatively similar to the fluctuation-driven field pre-
dicted by numerical simulations of the experiment [25].
These simulations predict both the presence of the dipole
moment and the weakening of the toroidal field. However,
the magnitude of the fluctuation-driven field presented here
is 5 times larger than that predicted by the simulations. The
reason for this discrepancy is not known, though it may be
related to differences in fluid forcing or the simulation’s
small value of Re.

In summary, magnetic and velocity field measurements
have been used to determine the structure of fluctuation-
driven currents in the Madison Dynamo Experiment. These
currents lead to a magnetic field in opposition to the
experiment’s dominant magnetic field. This is the first
observation of turbulent diamagnetism in a laboratory
setting. Analysis of the nature of the fluctuations which
leads to this turbulent EMF is ongoing, and future work
will focus on further understanding the localized regions of
current generation. Given that the observed effect is dia-
magnetic, it indicates that such fields could be a hindrance
to magnetically self-exciting geophysical and astrophysi-
cal systems, as well as simply connected liquid-metal
dynamo experiments.
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