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We solve the problem of Taylor dispersion in the presence of absorbing boundaries using an exact
stochastic formulation. In addition to providing a clear stochastic picture of Taylor dispersion, our method
leads to closed-form expressions for all the moments of the convective displacement of the dispersing
particles in terms of the transverse diffusion eigenmodes. We also find that the cumulants grow asymp-
totically linearly with time, ensuring a Gaussian distribution in the long-time limit. As a demonstration of
the technique, the first two longitudinal cumulants (yielding respectively the effective velocity and the
Taylor diffusion constant) as well as the skewness (a measure of the deviation from normality) are
calculated for fluid flow in the parallel plate geometry. We find that the effective velocity and the skewness
are enhanced while Taylor dispersion is suppressed due to absorption at the boundary.
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In a laminarly flowing fluid with flow velocity varying
perpendicular to the flow direction, suspended particles
will jump randomly across fast and slow streamlines due
to transverse diffusion. This fluctuating convectional ve-
locity arising from a random sampling of various stream-
lines disperses these particles along the direction of flow in
a well-studied process known as Taylor dispersion [1– 4].
The particles drift along the flow with an average velocity
ve and disperse linearly with time t along the flow; i.e., the

rms displacement in that direction is
��������������������������������
2�DTaylor �D�t

q
,

where the convection-induced Taylor dispersion coeffi-
cient DTaylor is found to scale as ‘2v2

e=D, D being the
molecular diffusion coefficient and ‘ being the transverse
dimension. Taylor dispersion has turned out to be impor-
tant both fundamentally in hydrodynamics and in its ap-
plications to diverse fields ranging from biological
perfusion, chemical reactors and lab-on-chips, to soil re-
mediation and oil recovery [4–11].

In spite of having been around for many decades, Taylor
dispersion in the presence of absorption, even in simple
geometries (such as Poiseuille flow in tubes), has proven to
be a mathematically challenging problem [12–16]. As
Taylor dispersion under Poiseuille flow in tubes is now
routinely used to measure molecular diffusion coefficients
[17], it is important to compute the errors due to absorption
at the walls. The same holds true for other applications
outlined in the previous paragraph. The methods used
originally [1–3] worked only in the absence of absorption.
This was pointed out in the most ‘‘modern’’ treatment
available—by Gill, Lungu, and Moffatt [15,16] dating
back to over 40 years ago. They showed that the effective
velocity is enhanced while Taylor dispersion is suppressed
due to absorption at the boundary. However, even in their
scheme, obtaining higher than second moments, and thus

estimating deviation from Gaussianity of the particle con-
centration profile along the direction of flow, becomes
prohibitively tedious and hence was not addressed.

Our approach goes a step further than this cornerstone
work. We provide the correct stochastic picture of the
underlying process. When decay is present, the usual
probabilistic techniques [12,13] fail. We formulate, for
the first time, the correct technique—ultimately providing
a visually appealing and computationally simple stochastic
method to find all moments or cumulants of the longitudi-
nal (i.e., along the convective flow direction) displacement
for uniform (linear) laminar flow. We find that the cumu-
lants grow asymptotically linearly with time ensuring a
Gaussian distribution in the long-time limit, as is character-
istic of drifting random walkers on a lattice [18].

Consider diffusing particles being carried along by a
fluid flowing unidirectionally in the x direction through a
uniform cross section A. The particle position in the trans-
verse section A will be denoted by ~y, while the complete
position will be specified by x � �x; ~y�. The concentration
of the particles, N�x; t�, evolves according to the convec-
tive diffusion equation inside the fluid volume V:

 

@N�x; t�
@t

� Dr2
xN�x; t� � v�x� � rN�x; t�; x 2 V;

(1)

whereD is the molecular diffusion constant of the particles
in the still fluid and v�x� � v� ~y�x̂ is the x-independent
convective velocity field of the fluid. The presence of
absorbing walls is taken into account by the boundary
condition

 Dê � rxN�x; t� � �N�x; t� � 0; x 2 @V; (2)

where � is a measure of the surface absorption rate that
varies from zero (reflecting walls) to infinity (perfect ab-
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sorption), while ê�x� is the normal to the surface @V at x.
Since the cross section is uniform, ê�x� � x̂ � 0. This en-
ables us to replace ê � rx by ê � ry in (2).

By integrating over x in (1) and (2), a diffusion equation
for n� ~y; t� �

R
dxN�x; t�—the concentration of particles in

the transverse section A—is obtained with absorbing
boundary conditions (when N, @xN ! 0 as x! �1):
 

@n� ~y; t�
@t

� Dr2
yn� ~y; t�; ~y 2 A; (3a)

Dê � ryn� ~y; t� � ��n� ~y; t�; ~y 2 @A: (3b)

This yields the ~y statistics of the dispersing particles that
we will use in the formalism below involving Eqs. (4) and
(5).

We now proceed to find the moments of x�t�. We shall
not show explicitly the noise that is responsible for the
usual molecular diffusion along the x direction and con-
centrate on the dominant convective noise [19] encoded in
the stochastic equation that gives rise to the convective part
in (1). This equation is

 

dx�t�
dt
� v� ~y�t��) x�t� �

Z t

0
dt0v� ~y�t0��: (4)

Intrinsic diffusive noise along the x direction may be
incorporated easily—in particular, the mean will be un-
affected while DTaylor will be additively augmented by D.
We are considering the case x�0� � 0 here. To proceed
further, we introduce the Green function or propagator
G� ~y; tj ~y0�—the t > 0 solution to (3) when n� ~y; 0� � �� ~y�
~y0�. Its most important use is encoded in the formula [21]

 n� ~y; t� �
Z
A
dy0G� ~y; t� t0j ~y0�n� ~y0; t0�; (5)

for t 	 t0. In other words, it gives us the fraction of
particles starting out from an arbitrary initial state ( ~y0; t0)
and surviving until a specific final state ( ~y; t0).

To illustrate the technique of obtaining the moments of
x�t�, we start with the first one—the mean. It is obtained by
averaging (4) over the particles that survive the absorbing
walls until time t. Following (5), the particle density at
( ~y0; t0) is given by

R
G� ~y; t0j ~yi�n� ~yi; 0�dyi. However, in the

remaining time (t� t0) only a fraction G� ~yf; t� t
0j ~y� of

these will survive until a final state ( ~yf; t). Thus, the
number density of particles that pass through ( ~y0; t0) and
also survive until t is

 �� ~y; t0jt� �
Z
A
dyf

Z
A
dyiG� ~yf; t� t0j ~y�G� ~y; t0j ~yi�n� ~yi; 0�:

(6)

Multiplying this density by the corresponding displace-
ment v� ~y�dt0, averaging over all possible intermediate
positions, and finally adding up all these averaged dis-
placements, we find that

 hx�t�i �
1

N�t�

Z t

0
dt0

Z
A
dyv� ~y��� ~y; t0jt�; (7)

where the (normalizing) denominator N�t� is equal to the
total number of particles that survive until t. Similarly,
squaring (4) and averaging over the surviving particles
one can show that the second moment is given by

 

h�x�t��2i �
2

N�t�

Z
0
t1
t2
t

dt1dt2
Z
A�A

dy1dy2v� ~y1�v� ~y2��� ~y1; t1j ~y2; t2jt�; (8a)

�� ~y1; t1j ~y2; t2jt� �
Z
A�A

dyidyfG� ~yf; t� t2j ~y2�G� ~y2; t2 � t1j ~y1�G� ~y1; t1j ~yi�n� ~yi; 0�: (8b)

The density of walkers who survive until t after passing
through ( ~y1; t1) and ( ~y2; t2) is given by �� ~y1; t1j ~y2; t2jt�,
analogous to (6). All higher moments may be obtained
by repeating the arguments leading to the above results.

The preceding arguments thus provide the correct ex-
position of the stochastic technique to be used when ab-
sorption is also present. This will be the mainstay of the
remaining results to be derived in this Letter. We note that
the formulation is exact in the framework we consider—
viz. the statistics obeyed by ~y is independent of x.

We can solve (3) by expanding in terms of diffusion
eigenmodes [21]:

 n� ~y; t� �
X1
k�0

nk k� ~y�e
��kt; (9)

where n0 � 0 (necessarily) and

 

�Dr2
y � �k� k� ~y� � 0; ~y 2 A; (10a)

�Dê � ry � �� k� ~y� � 0; ~y 2 @A; (10b)

��0 < �1 < �2 . . .�Z
A
dy j� ~y� k� ~y� � �jk: (10c)

The propagator is given by [21]

 G� ~y; tj ~y0� �
X1
n�0

 n� ~y� n� ~y
0�e��nt: (11)

The lowest eigenvalue �0 for this problem becomes non-
zero for � � 0—this is the main difference between the
absorbing and nonabsorbing cases. At long times all the
higher modes decay with inverse mean lifetimes of

 �n � n2=�; (12)

where � is the characteristic relaxation time scale of the
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transverse diffusion process and scales as ‘2=D, where ‘ is
the characteristic length scale of the cross section A. In the
long-time limit t � we can thus work with only the
lowest mode in (9) and the errors will go as O�e�t=��.

We consider this long-time limit in what follows. We
find that the moments can be conveniently evaluated in
terms of simple ‘‘matrix elements’’

 vjk �
Z
A
dy j� ~y�v� ~y� k� ~y�: (13)

Using (11) and (10) in (7) and keeping only the dominant
terms as outlined in the previous paragraph, we obtain the
following expression for the first moment in the long-time
limit:

 hx�t�i ���!t2�
v00

z}|{ve

t�O�e�t=��: (14)

This result is very counterintuitive since one naı̈vely ex-
pects, at late enough times, the effective velocity ve to be
the same as the asymptotic instantaneous mean velocity
that is proportional to

R
A vn /

R
A v 0 —since n� ~y; t!

1� �  0� ~y�. However, absorption at the walls modifies
the probability that a particle starting out at ~y survives after
a long time (i.e., �) from being ~y independent to being
proportional to  0� ~y�—this provides the additional power
of  0 in (14) (recall that v00 �

R
v 2

0).
Analogously, this time using (8) instead of (7) above we

calculate the variance in x to be

 �2�h��x�t��2i ���!t3�
t�2�

X1
k�1

v2
k0

�k��0|������{z������}
DTaylor

�O�e�t=��; (15)

while the third and fourth cumulants [22] simplify to
 

�3 � h��x�t��
3i ! 6t

X1
j�1

X1
k�1

v0j�vjk � �jkv00�vk0

��j � �0���k � �0�
; (16a)

�4 ! 24t
�X
k>0

v2
00v

2
0k

��k � �0�
3 �

X
k;l>0

v2
0kv

2
0l � v00v0kvklvl0

��k � �0���l � �0�
2

�
X

j;k;l>0

v0jvjkvklvl0
��j � �0���k � �0���l � �0�

�
; (16b)

showing that the skewness and kurtosis [22], which are
standard measures of the deviation from Gaussianity, die
out with time (‘‘flatness,’’ a related measure defined by
�2 � �2 � 3, tends to its Gaussian limit of 3):
 

�1 �
�3

�3=2
2

�

���
�
t

r
; (17a)

�2 �
�4

�2
2

�
�
t
: (17b)

Using the same arguments, higher cumulants may be
simplified to forms analogous to Eqs. (14) or (15) in the
long-time limit. Because of the straightforward alge-

bra involved, computer algebra systems (we used
MATHEMATICA) may be programmed to do this correctly
and eliminate corrections O�e�t=��.

We have analytically computed up until the fifth cumu-
lant this way and found that they are all proportional to
time in the long-time limit. We assert that this holds to all
orders. This implies that the probability distribution func-
tion of the longitudinal displacement tends to a Gaussian
with deviations that die as 1=t—similar to the case of
reflecting boundary conditions [3]. A similar behavior is
also exhibited by drifting random walkers on a lattice [18].

Finally let us compute a specific example—Taylor dis-
persion of particles suspended in fluid flowing unidirec-
tionally between two infinite parallel plates (see Fig. 1).
Absorption at the walls is characterized by the dimension-
less parameter 	 � �‘=D [� is defined in (2)]. For conve-
nience, we have used the dimensionless coordinate

 � y=‘ below. The eigenfunctions (10) for this case
turn out to be

 

 n�
� �

��������������������������������
	2 ��2

n

�	� 	2 ��2
n�

s
cos

�
�n
�

n�
2

�
; (18a)

	
�n
� tan

�
�n �

n�
2

�
; n � 0; 1; . . . : (18b)

We obtained, for 	� 1,

 

�n �
����
	
p

�
1�

	
6
�

11	2

360
�O�	3�

�
; n � 0; (19a)

�
n�
2
�

2	
n�
�

2

n�

�
2	
n�

�
2
�O

�
2	
n�

�
3
; n � 1 . . . :

(19b)

For 	! 1,

 �n �
�n� 1��

2
; n � 0; 1; . . . : (20)

Finally, the previously introduced eigenvalues �n [see
(10)] are obtained from the relation

 �n � D
�2
n

‘2 : (21)

Using our formulas (14) and (15) we have calculated the
effective velocity and the Taylor dispersion constant to be

 

vx (y) = v0 1 − y2 2fluid

y = +

y = −

y = 0

FIG. 1. Taylor dispersion between parallel plates.
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ve �
2v0

3

�
1�

2

15
	�O�	2�

�
; 	� 1;

�
2v0

3

�
1�

3

�2

�
; 	! 1; (22a)

DTaylor �
8v2

0‘
2

945D

�
1�

4

15
	�O�	2�

�
; 	� 1

� 14% of value at	 � 0; when	! 1: (22b)

When there is no absorption (	 � 0), ve is equal to the
asymptotic mean instantaneous velocity of the particles
since  0 is constant. However, since the slower particles
near the walls are also the ones that are preferentially
absorbed, ve increases with 	 as only surviving particles
contribute to the moments. Similarly, since more particles
at the walls get removed for increasing 	, the dispersion in
the convection field as seen by the particles goes down and
so doesDTaylor which arises due to it. Our results (22) agree
with those derived in [16] by a more tedious method. One
may reproduce (15) from [16] with some effort. However,
as already noted before, it is very difficult to obtain simple
formulas for the higher moments using the method pre-
sented there.

Finally, the skewness, which is a measure of the devia-
tion from Gaussianity, is found to be
 

�1 � �0:186

������
‘2

Dt

s
�1� 1:7	�O�	2��; 	� 1;

� �0:635

������
‘2

Dt

s
; 	! 1; (23)

showing that it is negative and enhanced due to absorption
at the walls. The zero-absorption case of this result (23) has
been independently verified using the method presented in
[3].

In conclusion, we have a picturesque and computation-
ally simple solution to a problem of general interest. For
example, we may now estimate the error in measuring D
using Taylor dispersion [17]. The value of �0 and conse-
quently 	 may be obtained from the observed exponential
decay of the particle numbers and subsequently used in the
corrected formula (15) to estimate D from the experimen-
tally observed variance. Also note that the moments in the
case of an arbitrary cross section may be computed nu-
merically to the necessary precision by involving a finite
number of eigenmodes. This is possible because terms

involving higher eigenmodes get progressively less impor-
tant as may be easily seen from the forms of (14) and (15).
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