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In a strongly nonlinear viscous granular chain impacted by a single grain we observe a wave
disturbance that consists of two parts exhibiting two time scales of dissipation. Above a critical viscosity
there is no separation of the two pulses, and the dissipation and nonlinearity dominate the shocklike
attenuating pulse.
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In this Letter we present our observation of a qualita-
tively new two-wave structure in a strongly nonlinear
weakly dissipative granular system. While we only dem-
onstrate this phenomenon in a one-dimensional granular
chain, this new structure may be expected in other strongly
nonlinear discrete systems with weak dissipative forces
dependent on the relative velocities of its components.
We speculate that this phenomenon will be observed in
molecular chains under conditions of short pulse loading
such as femtosecond-laser-generated pulses, waves gener-
ated in atomic lattices by bombardment of low density
beams of ions (atoms), and waves in three-dimensional
packing of spherical beads immersed in liquid under
short-duration plane explosive loading. The specific model
under consideration here is perhaps the simplest example
of a strongly nonlinear discrete system available for ex-
perimental verification. It is a chain of granules that inter-
acts via a power law potential,

 V��k;k�1� �
A
n
j�k;k�1j

n����k;k�1�; (1)

where �k;k�1 � yk � yk�1 and yk is the displacement of
granule k from its equilibrium position. The Heaviside
function ����� ensures that interactions exist only when
the grains are in contact. The prefactor A is a function of
Young’s modulus E, the Poisson ratio �, and the principal
radius of curvature R of the grain surfaces at the point of
contact. The exponent n depends on the topological prop-
erties of the contacting surfaces. For the physically impor-
tant case of the Hertz potential, n � 5=2 (spherical
granules), A � �E=3�1� �2��

������
2R
p

[1]. The equation of
motion for the kth grain inside the chain is

 �x k � ��� _xk�1 � _xk� � �xk � xk�1�
n�1���xk � xk�1�

� ��� _xk�1 � _xk� � �xk�1 � xk�n�1���xk�1 � xk�;

(2)

where a dot denotes a derivative with respect to t, and � is
the viscosity coefficient. The rescaled variables xk � yk=b,
t � �v0=b��, � � ~��b=mv0� [b � �mv2

0=A�
1=n] are similar

to those of Ref. [2]. Initially the granules are placed side by
side, just touching but without precompression (i.e., not
pushed closer together than their diameter, but see below
for relaxation of this restriction), and a velocity v0 is
imparted to a single grain (v0 � 1 in the scaled problem).

In the absence of dissipation, the solution to the problem
is well understood [2–5]. For n > 2, analytic solutions in
the long-wavelength approximation agree with numerical
simulations, and agreement is better for smaller n. The
impact by a single particle (equivalent to a �-function force
applied to the chain) quickly develops into a stationary
solitary wave whose width or height depends on n. For
elastic spherical grains (n � 5=2) the solitary wave resides
on about five grains.

The different approaches to the dissipation can be found
in [6–11]. In particular, dissipation based on relative ve-
locities of grains can dramatically change the pulse profile
[12,13].

We proceed to describe our results obtained from nu-
merical integration of the system (2). Below a critical
viscosity, a pulse similar to a solitary wave caused by the
strongly nonlinear forces in the discrete medium is still
generated. We call this pulse or its remnants the primary
pulse. However, because the pulse is spatially narrow, there
are high velocity gradients that cause a relatively rapid loss
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of its energy. A quasistatic precompression appears behind
the primary pulse because the forward displacements of the
particles closer to the impacted end are larger than the
corresponding displacements of particles further away
from this end due to the attenuation of the velocity of the
particles in the propagating wave [14]. A slight compres-
sion tail induced by an attenuating solitary pulse due to a
hydrodynamical damping similar to that considered in our
Letter was observed in a weakly nonlinear case in Ref. [8].
This precompression is due entirely to dissipation. It
changes the nature of the medium behind the primary
pulse. A broad secondary pulse follows the primary pulse.
The secondary pulse is appropriately thought of as a ‘‘dis-
sipative pulse’’ since it only occurs in the presence of
dissipation; it has much smaller velocity gradients than
the primary pulse and is therefore far more persistent. It
quickly evolves into a long-lived structure with a long tail
of grains of uniform velocity. This combination is an
entirely new structure. In the following, we discuss the
evolution of these pulses, as well as the excitation above
the critical viscosity.

Starting from the impact by a single grain, a small
amount of energy is lost in some backscattering of nearby
granules, but almost all of the energy resides in the forward
traveling wave, both parts of which are formed very fast.
The total energy of the system as a function of time is
shown in the inset of Fig. 1 for two values of n and three
values of �. The attenuation of the energy of the ‘‘pri-
mary’’ and ‘‘secondary’’ portions for the case n � 5=2 and
� � 0:01 is shown in Fig. 1, demonstrating the separation

of time scales for energy dissipation. The primary pulse is a
highly nonstationary portion of the wave that maximizes
the rate of dissipation of some of the energy, as reflected in
the steep exponential decay associated with this loss. The
energy decay slows down drastically as the primary pulse
vanishes, and only the more persistent secondary pulse
remains. Dissipation of energy in the exponential decay
regime is faster for higher n. We explain this behavior by
the larger velocity gradients in the primary pulse, whose
width decreases with increasing n [4]. An excellent nu-
merical fit to the primary pulse decay is provided by the
expression E�t� � E0 exp��0:92�t�, while the rise of the
secondary pulse is B�1� exp��0:92�t��, where B �
0:005 is the maximum energy of the secondary pulse for
these parameters. The secondary pulse also decays, but far
more slowly than the primary pulse, so that on the time
scale of Fig. 1 the energy in the secondary pulse quickly
reaches its maximum value and remains essentially
constant.

The primary pulse travels along the chain with a dimin-
ishing speed since its amplitude is decreased by the dis-
sipation. At very early times the secondary pulse also
exhibits a slightly diminishing amplitude and velocity,
but increasing energy, as it quickly settles into a broad
pulse of almost constant velocity amplitude with a uniform
velocity tail that stores kinetic energy.

Figure 2 details the behavior of the secondary pulse
while the primary pulse has not yet disappeared. At first,
the secondary pulse moves more slowly than the primary,
but this reverses as the primary pulse slows down with its
faster loss of energy and the peak of the secondary pulse
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FIG. 1. Breakdown of the total energy (solid line) into portions
associated with the primary pulse (dotted line) and the secondary
pulse (dashed line) for n � 5=2 and � � 0:01. Inset: Time
evolution of the total energy, where two sets of three curves
are shown, corresponding to n � 2:2 (upper set) and 2.5 (lower
set). Each set shows results for � � 0:01 (dotted line), 0.005
(dashed line), and 0.001 (solid line). Early exponential decay
reflects the energy loss mainly by the primary pulse. The
remaining energy stored in the secondary pulse dissipates on a
much longer time scale.
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FIG. 2. Snapshots of the velocities of the grains at early times
ranging from 40 to 95 in steps of 5 in nondimensional units. The
abscissa is the moving variable ��t� � k�

R
t
0 c�t�dt, where c�t�

is the time-dependent velocity of the primary pulse, and k
denotes the granule in the chain. Eventually the primary pulse
and the precompression behind it vanish and the secondary pulse
continues to move at an essentially constant velocity in the sonic
vacuum (n � 5=2 and � � 0:005).
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acquires an essentially constant velocity amplitude. The
secondary pulse is asymmetric, generating an extremely
persistent tail of essentially equal velocity granules behind
it (not seen explicitly in the figure). We find excellent
agreement between the local speed of sound cs and the
speed of the peak of the secondary pulse for a number of
different n and �.

Next we follow the continuing history of the pulses. In
Fig. 3 we show a typical low � unscaled progression with
time. The figure exhibits all the characteristics we have
discussed above, but it also shows three additional features.
One is that the secondary pulse, being nonlinear, continues
to change in shape. The pulse steepens (becoming more
and more asymmetric) as its peak travels faster (with local
velocity cs) than the local sound speed at the bottom right
of the peak. Secondly, the primary and secondary pulses
have comparable amplitudes before the primary pulse dis-
sipates. When the secondary pulse is steep enough, disper-
sion starts to prevail and the front displays oscillatory
structure with peaks that are a few grains wide, similar to
the primary pulse (inset of Fig. 3). The secondary pulse is
shocklike, with velocities of the grains in the pulse at least
1 order of magnitude smaller than the pulse phase speed.

The detailed results presented to this point are associated
with small values of �. In this regime it has been reason-
able to speak of two pulses as though they were separate
entities, the primary being mainly due to nonlinearity and
discreteness, and the secondary one caused mainly by
dissipation and nonlinearity. The primary pulse causes
the precompression that underlies the secondary pulse,
and in this sense both together are a single entity.
Nevertheless, it is not inappropriate for these low viscos-
ities to speak of a ‘‘separation’’ of pulses.

For small viscosities (� 	 0:03) the secondary pulse
reaches a critical slope for transition to an oscillatory
profile before catching the primary pulse, while the pri-
mary pulse loses almost all of its energy before being
absorbed by the secondary pulse (Fig. 3; the oscillatory
shock profile first emerges when the secondary pulse is in
the vicinity of particle 300, not shown in the figure). We
have observed that in this small-� regime the maximum
velocity in the secondary pulse increases with increasing
viscosity because larger dissipation is associated with a
greater precompression resulting in a secondary pulse of
higher amplitude. For very small � (&0:002) the secondary
pulse has an almost imperceptible amplitude on our nu-
merical scale (and of course it disappears entirely when
� � 0), and the primary pulse has a very long life.
However we do not find a transition to a regime without
a secondary pulse for any finite value of �. The secondary
pulse fades away smoothly with diminishing �.

For intermediate viscosities (0:04 	 � 	 0:07) the sec-
ondary pulse catches up with the primary pulse while the
primary pulse still has an amplitude comparable to the
secondary (upper panel of Fig. 4). As in the previous
case, after the first pulse disappears, the secondary pulse
propagates as a shocklike wave with an oscillatory front
caused by the dispersion.

For large viscosities (� 
 0:07) there is no clear dis-
tinction between the primary and secondary pulses.
Actually, for viscosities � 
 0:1 it is no longer appropriate
to think of two separate pulses (lower panel of Fig. 4).
From the beginning, there is a single shocklike structure of
dissipative origin with a sharp monotonic front.

We have presented our observation of a qualitatively
new two-wave structure in a strongly nonlinear discrete
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FIG. 3. Snapshots of the velocity profile for small viscosity
(� � 0:02) at different times whose progression is easily recog-
nizable as both pulses move forward, the secondary pulse
steepens, and the primary pulse disappears. The times are 500,
900, and 1400, and n � 5=2. Inset: Detailed view of the crest of
the velocity profile at time 1400.
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FIG. 4. Upper panel: Snapshots of the velocity profile for
intermediate viscosity (� � 0:04, n � 5=2) at different times:
140, 220, and 400. Lower panel: Snapshots of the velocity profile
for large viscosity (� � 0:1, n � 5=2) at different times: 100,
300, and 500.
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dissipative system excited by a � force applied to a single
grain. Intuitively one might expect that such an excitation
should result in a one-wave structure, either an attenuating
solitary wave or an attenuating shock wave. Instead, for
some range of viscosities the observed structure consists of
a primary pulse similar to that which is characteristic of a
nondissipative sonic vacuum accompanied by a secondary
pulse whose presence is entirely due to viscosity. Because
of its high velocity gradients, the primary pulse is rapidly
attenuated, while the broader and smoother secondary
pulse persists for much longer times. The velocity of the
maximum of the secondary pulse is practically constant
during its long lifetime, and its speed is essentially identi-
cal to the local speed of sound. There are thus three
distinctly separate time scales in this problem: an ex-
tremely short scale for the formation of the double-pulse
excitation, a fairly rapid time scale of attenuation of the
primary pulse, and a very slow time scale for the eventual
attenuation of the secondary pulse. Below a critical vis-
cosity the secondary pulse develops a dispersion-induced
oscillatory front. Above the critical viscosity, it is no longer
possible to think of the primary and secondary pulses as
separate entities, and the resulting excitation presents a
monotonic front. Similar behavior can be expected in other
strongly nonlinear discrete media under short pulse exci-
tation subject to weak dissipation proportional to the rela-
tive velocity of constituent particles. Recently, Herbold and
Nesterenko [13] found an oscillatory or monotonic shock-
wave structure (depending on viscosity) in a similar chain
in which the velocity of the first particle is held constant
(long input pulse). Experimental observation of this struc-
ture is possible in granular chains of as few as 100 granules
immersed in liquids of different viscosities [12].

We have explicitly demonstrated the two-wave struc-
ture in a granular chain in which the granules are just
touching. However, the effect is robust to modest changes
in this condition. When there are very small gaps compared
to the granule size (e.g., a gap of 10�6 in our dimension-
less units in a chain of 1000 granules with � � 0:01), we
see no qualitative change in the behavior. If the chain is
statically compressed with a small ratio of initial displace-
ments to dynamic displacements (e.g., 0.01), the two-wave
structure remains essentially the same at similarly low
levels of dissipation, with the additional appearance of a
rarefaction wave and an oscillatory tail behind the second-
ary wave.

Our future plans include the exploration of this behavior
in other nonlinear discrete dissipative systems, in systems
of higher dimensions, and in experiments.
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