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The four-body equations of Alt, Grassberger, and Sandhas are solved, for the first time, for proton-3He
scattering including the Coulomb interaction between the three protons using the method of screening and
renormalization as was done recently for proton-deuteron scattering. Various realistic two-nucleon
potentials are used. Large Coulomb effects are seen on all observables. Comparison with data at different
energies shows large deviations in the proton analyzing power but quite reasonable agreement in other
observables. The effect of the nucleon-nucleon magnetic moment interaction and correlations between
p-d and p-3He analyzing powers are studied.
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Modern calculations of light nuclear systems A � 12 are
essential to our understanding of the force models that have
been developed to describe how nucleons interact at low
energies [1,2]. Of these nuclear systems, the four-nucleon
(4N) system is particularly important because it gives rise,
experimentally, to the simplest set of nuclear reactions that
shows the complexity of heavier systems and the Coulomb
interaction manifests itself in new ways relative to what is
observed in the three-nucleon (3N) system. Theoretically it
is also important because with powerful numerical tech-
niques and fast computers one can calculate not only bound
state properties [3] but also scattering observables [4–10]
for a number of elastic, transfer, and breakup reactions that
place new challenges to our understanding of the under-
lying force models. The importance of scattering calcula-
tions also has to do with the possibility to probe states in
the continuum associated with specific resonances, states
of higher angular momentum than corresponding bound
states, effects that depend on the spin orientation of the
projectile and/or target, and threshold effects on the ob-
servables, among others.

While the three-nucleon system has been extensively
studied [11,12] through neutron-deuteron (n-d) and
proton-deuteron (p-d) elastic scattering and breakup ex-
periments, exact calculations using realistic force models
as well as interactions derived from effective field theory
were restricted, for a long time, to the n-d system due to
limitations in including the Coulomb force in the descrip-
tion of p-d scattering beyond low-energy p-d! p-d and
p-d$ �3He calculations [13,14] in the framework of the
variational hyperspherical approach. The situation has now
changed due to the work of Refs. [15,16] where calcula-
tions of p-d! p-d, p-d! ppn, p-d$ �3He, �3He!
ppn, e3He! e0p-d, and e3He! e0ppn were performed
at energies ranging from 1 MeV in the center of mass (c.m.)
system to the pion production threshold. The work is based
on the solution of the momentum-space Alt, Grassberger,
and Sandhas (AGS) equations [17] together with the
screening and renormalization approach [18–20] for the
Coulomb interaction leading to the results of observables

that are independent of the screening radius, provided it is
sufficiently large.

In the present Letter for the first time we extend the
method of Refs. [15,16] to the p-3He elastic scattering
using the four-body AGS equations [21]. The aim is to
bring the 4N scattering problem to the same level of under-
standing in terms of the underlying two-nucleon (2N)
forces as already exists for 3N, which means that calcu-
lations are carried out without approximations on the 2N
transition matrix (tmatrix) like in Ref. [6] or limitations on
the choice of basis functions as in Refs. [22,23]. Therefore,
after partial-wave decomposition, the AGS equations are
three-variable integral equations that are solved numeri-
cally without any approximations beyond the usual discre-
tization of continuum variables on a finite momentum
mesh. The results we present here are converged vis-á-vis
number of partial waves and momentum meshpoints as
well as the value of the screening radius of the Coulomb
potential. These calculations are also an extension to
p-3He of the work already developed for n-3H [24] and
were presented for the first time in Ref. [25]. Our work
follows the work of Refs. [7,22,23], but with greater num-
ber of 2N, 3N, and 4N partial waves in order to get fully
converged results for the spin observables and with various
2N potentials. The advantage of the present work is that it
is easier to extend to inelastic reactions and to use with
nonlocal interactions.

Our description of 4N scattering is based on the symme-
trized four-body AGS equations given in Ref. [24] where
the solution technique is discussed in detail. In order to
include the Coulomb interaction we follow the methodol-
ogy of Refs. [15,16] and add to the nuclear pp potential the
screened Coulomb one wR that, in configuration space, is
given by

 wR�r� � w�r�e��r=R�
n
; (1)

where w�r� � �e=r is the true Coulomb potential, �e ’
1=137 is the fine structure constant, and n controls the
smoothness of the screening; n � 4 is the optimal value
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which ensures that wR�r� approximates wellw�r� for r < R
and simultaneously vanishes rapidly for r > R, providing a
comparatively fast convergence of the partial-wave expan-
sion. The screening radius R must be considerably larger
than the range of the strong interaction but from the point
of view of scattering theory wR is still of short range.
Therefore, the equations of Ref. [24] become R dependent.
The transition operators U��

�R� , where ���� � 1 and 2
corresponds to initial/final 1� 3 and 2� 2 two-cluster
states, respectively, satisfy the symmetrized AGS equa-
tions
 

U11
�R� � ��G0t�R�G0�

�1P34 � P34U1
�R�G0t�R�G0U

11
�R�

�U2
�R�G0t

�R�G0U
21
�R�; (2a)

U21
�R� � �G0t

�R�G0�
�1�1� P34�

� �1� P34�U1
�R�G0t�R�G0U

11
�R�: (2b)

Here G0 is the four free particle Green’s function and t�R�

the two-nucleon t matrix derived from nuclear potential
plus screened Coulomb between pp pairs. The operators
U�
�R� obtained from

 

U�
�R� � P�G�1

0 � P�t
�R�G0U�

�R�; (3a)

P1 � P12P23 � P13P23; (3b)

P2 � P13P24; (3c)

are the symmetrized AGS operators for the 1� �3� and
�2� � �2� subsystems and Pij is the permutation operator of
particles i and j. Defining the initial/final 1� �3� and �2� �
�2� states with relative two-body momentum p

 j��R�� �p�i � G0t�R�P�j�
�R�
� �p�i; (4)

the amplitudes for 1� 3! 1� 3 and 1� 3! 2� 2 are
obtained as hpfjT

��
�R� jpii � S��h�

�R�
� �pf�jU

��
�R� j�

�R�
� �pi�i

with S11 � 3 and S21 �
���

3
p

.
In close analogy with p-d elastic scattering, the full

scattering amplitude, when calculated between initial and
final p-3He states, may be decomposed as follows

 T11
�R� � tc:m:R � �T11

�R� � t
c:m:
R �; (5)

with the long-range part tc:m:R being the two-body t matrix
derived from the screened Coulomb potential of the form
(1) between the proton and the c.m. of 3He and the remain-
ing Coulomb-distorted short-range part [T11

�R� � t
c:m:
R ] as

demonstrated in Refs. [20,26]. Applying the renormaliza-
tion procedure, i.e., multiplying both sides of Eq. (4) by the
renormalization factor Z�1

R [15,20], in the R! 1 limit,
yields the full 1� 3! 1� 3 transition amplitude in the
presence of Coulomb
 

hpfjT11jpii � hpfjtc:m:C jpii

� lim
R!1
fhpfj�T11

�R� � t
c:m:
R �jpiiZ

�1
R g; (6)

where the Z�1
R hpfjt

c:m:
R jpii converges (in general, as a

distribution) to the exact Coulomb amplitude hpfjtc:m:C jpii
between the proton and the c.m. of the 3He nucleus, and
therefore is replaced by it. The renormalization factor is
employed in the partial-wave dependent form as in
Ref. [15]

 ZR � e�2i��L��LR� (7)

with the diverging screened Coulomb p-3He phase shift
�LR corresponding to standard boundary conditions and
the proper Coulomb one �L referring to the logarithmi-
cally distorted proper Coulomb boundary conditions. The
second term in Eq. (6), after renormalization by Z�1

R ,
represents the Coulomb-modified nuclear short-range am-
plitude. It has to be calculated numerically, but, due to its
short-range nature, the R! 1 limit is reached with suffi-
cient accuracy at finite screening radii R. As in p-d elastic
scattering [15] one needs larger values of R for decreasing
proton energies, making the convergence of the results
more difficult to reach. Nevertheless, for Ep > 2 MeV
the method leads to very precise results as we demonstrate
in Fig. 1 for the differential cross section d�=d�, proton
analyzing power Ay, and p-3He spin correlation coefficient
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FIG. 1 (color online). Convergence of the p-3He scattering
observables with screening radius R. Results for the differential
cross section, proton analyzing power Ay, and p-3He spin
correlation coefficient Cyy at 4 MeV proton lab energy obtained
with screening radius R � 0 fm (dashed-double-dotted curves),
6 fm (dotted curves), 8 fm (dashed-dotted curves), 10 fm
(double-dashed-dotted curves), and 12 fm (solid curves) are
compared. Results without Coulomb (dashed curves) are given
as reference for the size of the Coulomb effect.

PRL 98, 162502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
20 APRIL 2007

162502-2



Cyy at proton lab energyEp � 4 MeV. The observables are
shown as functions of the c.m. scattering angle. Fully
converged results are obtained with R � 12 fm, but al-
ready R � 8 and 10 fm results are very close to them.
The calculations include isospin-singlet 2N partial waves
with total angular momentum I � 4 and isospin-triplet 2N
partial waves with orbital angular momentum lx � 7, 3N
partial waves with spectator orbital angular momentum
ly � 7 and total angular momentum J � 13

2 , 4N partial
waves with 1� 3 and 2� 2 orbital angular momentum
lz � 7, and all initial/final p-3He states with orbital angular
momentum L � 3. The charge-dependent (CD) Bonn po-
tential [27] is used. The effect of Coulomb is large in the
whole angular region, particularly for Ay where it reduces
the magnitude of the maximum. The R � 0 fm curve
corresponds to the so-called Doleschall approximation
which clearly fails to reproduce the full Coulomb effect.

In Figs. 2–4 we compare the results of our calculations
with data for a number of observables at Ep � 2:25, 4.0,
and 5.54 MeV. In addition to CD Bonn we use AV18 [28],
inside-nonlocal outside-Yukawa (INOY04) potential by
Doleschall [9,29] and the one derived from chiral pertur-
bation theory at next-to-next-to-next-to-leading order
(N3LO) [30]. The 3He binding energy (BE) calculated
with AV18, N3LO, CD Bonn, and INOY04 potentials is
6.92, 7.13, 7.26, and 7.73 MeV, respectively; the experi-
mental value is 7.72 MeV. As in n-3H scattering [24],
p-3He observables depend on the choice of potential;
predictions with N3LO and AV18 agree best with the cross
section data but it is INOY04 that provides the highest Ay at
the peak. If one considers AV18, CD Bonn, and INOY04
potentials alone, one might be tempted to conclude about a
possible correlation between observables and 3He BE.

Nevertheless, as discussed in Ref. [24], N3LO, for reasons
not yet fully understood, breaks this correlation in the
considered energy region. As found in Ref. [24], 4N
S-wave phase shifts correlate with the 3N BE [24] but as
the energy increases 4N Pwaves become very important as
well and behave differently depending on the choice of
potential. Therefore, correlations between p-3He observ-
ables and 3He BE cannot be established easily without
further studies, e.g., inclusion of a 3N force.

As shown in Figs. 3 and 4 3He target analyzing power
A0y and p-3He spin correlation coefficients Cjk are de-
scribed quite satisfactorily. This updates the findings of
Ref. [22] based on AV18 potential where significant dis-
crepancies were observed for A0y and Cyy. However, the
proton analyzing power is clearly underestimated by all
potentials. In contrast to low-energy p-d elastic scattering
where variations of the 2N interaction at the maximum of
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FIG. 3 (color online). 3He target analyzing power A0y and spin
correlation coefficient Cyy at 4.0 and 5.54 MeV proton lab
energy. Curves as in Fig. 2. The data are from Ref. [33].
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FIG. 2 (color online). The differential cross section and proton
analyzing power Ay at 2.25, 4.0, and 5.54 MeV proton lab energy.
Results including the Coulomb interaction obtained with poten-
tials CD Bonn (solid curves), AV18 (dashed curves), INOY04
(dashed-dotted curves), and N3LO (dotted curves) are compared.
The data are from Refs. [22,32,33].
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FIG. 4 (color online). p-3He spin correlation coefficients at
5.54 MeV proton lab energy. Curves as in Fig. 2. The experi-
mental data are from Ref. [33].
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Ay lead to 10% fluctuations, here we get 15%, which means
that the 4N system is more sensitive to off-shell differences
of the 2N force than the 3N system.

In Fig. 5 we compare Ay for potential INOY04 and its
version INOY040 [9,29] with modified 2N 3PI wave pa-
rameters such that it provides quite satisfactory description
of Ay in low-energy n-d and p-d scattering at the cost of
being inconsistent with the 2N data. However, for p-3He
Ay disagreement with data still persists.

In Fig. 6 we investigate the effect of 2N magnetic mo-
ment (MM) interaction. As for p-d scattering [31] it is
most visible for Ay at low energy where at Ep � 2:25 MeV
it gives rise to a 5.3% increase towards the data. At 4 MeV
the MM interaction effect is reduced to 2.7%.

In conclusion, we have been able to obtain ab initio four-
nucleon results for p-3He scattering that include the Cou-
lomb interaction between the protons for different realistic
local and nonlocal 2N interactions. The reliability of the
screening and renormalization approach is demonstrated.
The calculations describe existing data quite well except
proton Ay where there is 25%–40% discrepancy at the
peak. We find that 4N observables are more sensitive than
3N observables to off-shell changes in the 2N interaction,
and that curing Ay in low energy 3N scattering through
changes in the 2N 3PI partial waves still gives rise to a
p-3He Ay deficiency. A visible effect of 2N magnetic mo-
ment interaction is found for Ay at very low energy.
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FIG. 5 (color online). Proton analyzing power Ay at 2.25 and
5.54 MeV proton lab energy. Results for the potentials INOY04
(dashed-dotted curves) and INOY040 (solid curves) are com-
pared. The experimental data are from Refs. [22,33].
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FIG. 6 (color online). Proton analyzing power Ay at Ep � 2:25
and 4.0 MeV. Results for AV18 potential without (dashed curves)
and with (solid curves) magnetic moment interaction are com-
pared. The data are from Refs. [22,33].
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