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We construct the three-loop four-point amplitude of N � 8 supergravity using the unitarity method.
The amplitude is ultraviolet finite in four dimensions. Novel cancellations, not predicted by traditional
superspace power-counting arguments, render its degree of divergence inD dimensions no worse than that
of N � 4 super-Yang-Mills theory—a finite theory in four dimensions. Similar cancellations can be
identified at all loop orders in certain unitarity cuts, suggesting that N � 8 supergravity may be a
perturbatively finite theory of quantum gravity.
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While physicists do not yet know how to construct an
ultraviolet-finite, pointlike quantum field theory of gravity
in four dimensions, neither have they shown that such a
construction is impossible. Pointlike theories of gravity are
nonrenormalizable because the gravitational coupling is
dimensionful. To date, no known symmetry has proven
capable of taming the divergences, leading to the wide-
spread belief that all such theories require new physics in
the ultraviolet (UV). These beliefs were historically an
important motivation for the development of string theory.
Were a finite four-dimensional pointlike theory of gravity
to be found, surely either a new symmetry or nontrivial
dynamical mechanism must underpin it. The discovery of
either would have a fundamental impact on our under-
standing of gravity.

Supersymmetry has been studied extensively as a
mechanism for taming UV divergences (see, e.g.,
Refs. [1,2]). Although assumptions about the existence of
different types of superspaces lead to different power
counting, any superspace argument delays the onset of di-
vergences only by a limited number of loops. For example,
pure minimal (N � 1) supergravity cannot diverge until
at least three loops [3,4]. For maximal N � 8 supergrav-
ity [5], were a fully covariant superspace to exist, diver-
gences would be delayed until seven loops. With the
additional (unconventional) assumption that all fields re-
spect ten-dimensional general coordinate invariance, one
can even delay the divergence to nine loops [6]. Recent
arguments [7] using the type II string nonrenormalization
theorems of Berkovits [8] suggest that divergences in the
corresponding supergravity theory may indeed not arise
before this loop order, though issues with smoothness in
the low-energy limit do weaken this prediction [7]. Beyond
this order, no known purely supersymmetric mechanism
can avoid divergences. String dualities also hint at UV
finiteness for N � 8 supergravity [9], unless the situation
is spoiled by towers of light nonperturbative states from
branes wrapped on the compact dimensions [10].

Nonetheless, a different line of reasoning [11] using the
unitarity method [12] has provided direct evidence that
N � 8 supergravity may be UV finite to all loop orders
[13]. (See also Ref. [14].) At one loop, all known multi-
graviton amplitudes in the theory (including all with up to
six gravitons) can be expressed solely in terms of scalar
box integrals; neither triangle nor bubble integrals appear
[15,16]. Supersymmetry, factorization, and infrared argu-
ments provide strong evidence that the same is true for all
one-loop amplitudes. This ‘‘no-triangle hypothesis’’ [16]
implies a set of surprising cancellations which go beyond
any known superspace argumentation. Generalized unitar-
ity cuts, isolating one-loop subamplitudes inside higher-
loop amplitudes, then imply specific multiloop cancella-
tions [13]. Are similar cancellations present in all contri-
butions to multiloop amplitudes, and do they render the
theory UV finite?

In this Letter, we take a concrete step toward addressing
these questions by presenting the complete three-loop four-
point amplitude of N � 8 supergravity. Details of the
computation will appear elsewhere [17]. Here we show
that the amplitude possesses the cancellations expected if
the theory were indeed finite to all loop orders.

Reference [11] analyzed iterated two-particle cuts to all
loop orders and argued that N � 8 supergravity is finite
for

 D< 10=L� 2 �L> 1�; (1)

where L is the loop order andD is the dimension. (For L �
1, the finiteness bound is D< 8, not D< 12.)

A similar analysis for N � 4 super-Yang-Mills theory
[11,18] gives the finiteness condition,

 D< 6=L� 4 �L> 1�: (2)

The bound (2) differs somewhat from earlier superspace
power counting [19] although all bounds confirm UV
finiteness of N � 4 super-Yang-Mills theory in D � 4.
The bound (2) has been proven to all orders using N � 3
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harmonic superspace [2]. Explicit computations show that
it is saturated through four loops [11,13,18,20].

The N � 8 supergravity bound (1) corresponds, in the
language of effective actions, to a one-particle irreducible
effective action starting with loop integrals multiplied by
D4R4 at each loop order beyond L � 1. Here R4 is a
shorthand for the supersymmetrization of a particular con-
traction of four Riemann tensors [4], and D denotes a
generic covariant derivative. The stronger bound (2), if
applied to N � 8 supergravity, would differ from
Eq. (1) beginning at L � 3 for general D, although both
bounds imply three-loop finiteness for D � 4. It corre-
sponds to a three-loop effective action beginning with
D6R4, not D4R4. As the supergravity finiteness bound
(1) is based on only a limited set of unitarity cuts [11],
additional (stronger) cancellations may be missed [13].

To study this issue, we use the unitarity method [12,18]
to build the three-loop four-point N � 8 supergravity
amplitude. In this method, on-shell tree amplitudes suffice
as ingredients for computing amplitudes at any loop order.
The reduction to tree amplitudes is crucial. It allows the use
of the Kawai-Lewellen-Tye (KLT) [21] tree-level relations
between gravity and gauge-theory amplitudes [11], effec-
tively reducing gravity computations to gauge-theory ones.
The original KLT relations express tree-level closed-string
scattering amplitudes in terms of pairs of open-string ones.
The perturbative massless states of the closed and open
type II superstring compactified to four dimensions on a
torus are those of N � 8 supergravity and N � 4 super-
Yang-Mills theory, respectively. Thus, in the limit of en-
ergies well below the string scale, the KLT relations ex-
press N � 8 supergravity tree amplitudes as quadratic
combinations of N � 4 super-Yang-Mills tree amplitudes
(see, e.g., Ref. [15]). At tree level, there are no subtleties in
taking this limit.

We use the generalized unitarity cuts [22] illustrated in
Fig. 1. Together with the iterated two-particle cuts eval-
uated in Refs. [11,18], these cuts completely determine any
massless three-loop four-point amplitude. Since we are in-
terested in the UV behavior of the amplitudes in D dimen-
sions, the unitarity cuts must be evaluated in D dimensions
[23]. This renders the calculation more difficult because
powerful four-dimensional spinor methods cannot be used.
Some of the D-dimensional complexity is avoided by
performing internal-state sums in terms of the simpler
on-shell gauge supermultiplet of D � 10, N � 1 super-
Yang-Mills theory instead of theD � 4, N � 4 multiplet.
We have also performed various four-dimensional cuts,
which in practice provide a very useful guide.

Our computation proceeds in two stages. In the first
stage, we deduce the three-loop N � 4 super-Yang-
Mills amplitudes from generalized cuts, including cuts
(a)–(c) in Fig. 1, and the iterated two-particle cuts analyzed
in Refs. [11,18]. From the cuts, we obtain a loop-integral
representation of the amplitude. The diagrams in Fig. 2
describe the scalar propagators for the loop integrals. The
numerator factor for each integral in the super-Yang-Mills
case is given in the second column of Table I.

In the second stage, we use the KLT relations to write the
cuts of the N � 8 supergravity amplitude as sums over
products of pairs of cuts of the corresponding N � 4
super-Yang-Mills amplitude, including twisted nonplanar
contributions. The iterated two-particle cuts studied in
Ref. [11], together with the cuts in Fig. 1 evaluated here,
suffice to fully reconstruct the supergravity amplitude. We
find that the three-loop four-point N � 8 supergravity
amplitude in D dimensions is
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where S3 represents the six independent permutations of
legs f1; 2; 3g, � is the gravitational coupling, and M tree

4 is
the supergravity four-point tree amplitude. The I�x��s; t� are
D-dimensional loop integrals corresponding to the nine
diagrams in Fig. 2, with numerator factors given in the
third column of Table I. The Mandelstam invariants are
s � �k1 � k2�
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2. The nu-
merical coefficients in front of each integral in Eq. (3)
are symmetry factors of the diagrams. Remarkably, the
number of dimensions appears explicitly only in the loop
integration measure.

 

FIG. 1. Generalized cuts used to determine the three-loop four-
point amplitude.
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FIG. 2. Loop integrals appearing in both N � 4 gauge-theory
and N � 8 supergravity three-loop four-point amplitudes. The
integrals are specified by combining the diagrams’ propagators
with numerator factors given in Table I.
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We remark that the amplitude (3) could be used to study
D � 11, N � 1 supergravity compactified on a circle or
two-torus at three loops, just as the two-loop amplitude
[11] was analyzed in Ref. [24]. That analysis, along with
the assumption that M-theory dualities hold at this loop
order, restricts the type II string effective action at three
loops to start with D6R4, not D4R4.

With the explicit expression for the amplitude (3) in
hand, we may determine the UV behavior straightfor-
wardly. In the super-Yang-Mills case, the entries in the
second column in Table I contain no more than two powers
of loop momenta. Accounting for the ten propagators of
each diagram in Fig. 2 and the three-loop integration
measure, we see that each integral separately satisfies the
known super-Yang-Mills finiteness bound (2).

In contrast, the supergravity numerators, as given in the
third column of Table I, contain up to four powers of loop
momenta. Separately, these integrals satisfy the bound (1).
The iterated two-particle cuts evaluated in Ref. [11] give
the integrals (a)–(g) in Fig. 2 and Table I. All such con-
tributions have numerator factors which are squares of the
Yang-Mills ones. The entries (h) and (i) are new and do not
have this structure.

Might there be additional cancellations between the
integrals in the N � 8 supergravity case? To check this,
we expand each integral in a series in the external mo-
menta, keeping only the leading terms. We thereby keep
terms with maximal powers of loop momenta and set the
external momenta to zero in the propagators. Each integral
reduces to a sum of vacuum diagrams, possibly with
squared propagators. Figure 3 shows the resulting vacuum
diagrams V�x�. Integrals (a)–(d) in Fig. 2 have no powers of
loop momenta in their numerators, and hence do not con-
tribute to the leading UV behavior. The remaining integrals
in Eq. (3) reduce as follows,

 2I�e� ! 4V�a�; 2I�f� ! 4V�b�; 4I�g� ! 8V�a�;

1

2
I�h� ! �4V�a� � 8V�b� � 4V�c� � 2V�e�;

2I�i� ! �8V�a� � 4V�b� � 8V�d�;

(4)

taking into account the permutation sum over external
legs and suppressing an overall factor of �s2 � t2 �
u2�stuM tree

4 . Using a momentum-conservation identity,

 V�c� � 2V�d� �
1

2
V�e�; (5)

to eliminate V�c�, the coefficients of the remaining four
vacuum diagrams cancel completely.

Lorentz covariance implies that contributions with three
powers of loop momenta in the numerator are no more
divergent than integrals with only two powers. We have
also found a rearrangement of the loop-momentum inte-
grands which makes manifest this quadratic behavior,
equivalent to the amplitude behaving as D6R4 [17].
Thus, the N � 8 supergravity amplitude satisfies the
same finiteness bound (2) at L � 3 as the corresponding
N � 4 super-Yang-Mills amplitude.

Some of these cancellations have an all-loop general-
ization that can be understood as a direct consequence of
the no-triangle hypothesis [13]. Using generalized unitarity
we may isolate all one-loop subamplitudes of an L-loop
amplitude as shown in Fig. 4(a). For example, the cut
shown in Fig. 4(b) rules out the appearance of the vacuum
diagram V�a�, because it would imply the appearance of a
triangle integral at one loop. Similarly, we can infer a
cancellation between vacuum diagrams V�c� and V�d�. (A
squared propagator counts as two sides of a triangle inte-
gral.) At higher loops, the generalized cut in Fig. 4(a),
together with the no-triangle hypothesis, implies that any
leading-singularity vacuum diagram containing a triangle

 

FIG. 3 (color online). The vacuum diagrams V�x� encoding the
leading UV behavior of the individual N � 8 supergravity
diagrams. Dots on propagators represent squared propagators.
The shaded cross in diagram (c) represents a numerator factor of
l2, where l is the momentum of a collapsed vertical propagator.

TABLE I. The numerator factors of the integrals I�x� in Fig. 2. The first column labels the integral, the second column the relative
numerator factor for N � 4 super-Yang-Mills, the third column the factor for N � 8 supergravity. In the Yang-Mills case, an overall
factor of stA tree

4 has been removed, while in the supergravity case, an overall factor of stuM tree
4 has been removed. (A tree

4 denotes a tree-
level four-point amplitude of N � 4 Super-Yang-Mills theory.) The loop momenta li are the momenta of the labeled propagators in
Fig. 2, and l2i;j � �li � lj�
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subdiagram must have a vanishing coefficient. However,
this argument does not suffice to rule out vacuum diagrams
V�b� and V�e�, because they have no triangle subdiagrams.
Their coefficients nonetheless vanish, demonstrating the
existence of cancellations beyond those implied by the no-
triangle hypothesis.

This Letter establishes through three loops that the four-
point amplitudes of N � 8 supergravity have the same
ultraviolet critical dimension (2) as the corresponding
N � 4 gauge-theory ones. Fourteen powers of loop mo-
mentum are extracted from the numerators of the three-
loop integrals. This result is consistent with the manifest
symmetries of an off-shell N � 7 harmonic superspace
[2], whose existence would imply UV finiteness for D<
12=L� 2. However, the cancellations we find go beyond
this: generalized unitarity will propagate the additional
three-loop cancellations, as well as the one-loop no-
triangle constraint, into novel cancellations eliminating
increasing powers of loop momenta at all loop orders [17].

To unravel the origin of these cancellations, and to
constrain potential superspace explanations, it is important
to compute additional N � 8 amplitudes. Using the uni-
tarity method, it should be feasible to compute the four-
and five-loop four-point amplitudes, as well as the two-
loop five-point amplitude. It should also be possible to
carry out refined all-order studies, given the recursive
nature of the formalism. In particular, it is important to
investigate the classes of contributions not directly con-
strained by generalized unitarity and the no-triangle
hypothesis.

The result presented here, in conjunction with the all-
loop-order evidence from unitarity [13] and string theory
hints of additional cancellations [7–9], points strongly
towards the ultraviolet finiteness of N � 8 supergravity.
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FIG. 4 (color online). A generalized cut (a) isolating a one-
loop subamplitude in an L-loop amplitude. If a leg is external to
the entire amplitude, it should not be cut. From the generalized
cut (b), we see that diagram (a) in Fig. 3 must cancel since it has
a one-loop triangle subdiagram.
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