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We show that universal quantum computation can be performed within the ground state of a
topologically ordered quantum system, which is a naturally protected quantum memory. In particular,
we show how this can be achieved using brane-net condensates in 3-colexes. The universal set of gates is
implemented without selective addressing of physical qubits and, being fully topologically protected, it
does not rely on quasiparticle excitations or their braiding.

DOI: 10.1103/PhysRevLett.98.160502 PACS numbers: 03.67.Lx, 02.40.�k

Topological quantum computation offers the possibility
of implementing a fault-tolerant quantum computer avoid-
ing the extremely low threshold error rates found with the
standard quantum circuit model [1–4]. Physical systems
exhibiting a topological quantum ordered state [5,6] can be
used as naturally protected quantum memories [1,7,8].
Characteristic properties of topologically ordered systems
are the energy gap between ground state and excited states,
topology-dependent ground state degeneracies, braiding
statistics of quasiparticles, edge states, etc. [6]. The idea
is then to place the information in the topologically degen-
erate ground state of such a system, so that the protection of
the encoded information comes from the gap and the fact
that local perturbations cannot couple ground states. In
fact, the probability of tunneling between orthogonal
ground states is exponentially suppressed by the system
size and vanishes in the thermodynamic limit.

A stabilizer code [9,10] can be topological. The best
known example are Kitaev’s surface codes [1,7]. In general
a code is topological if its stabilizer has local generators
and nondetectable errors are topologically nontrivial (in
the particular space where the qubits are to be placed).
Given such a code, one can always construct a local
Hamiltonian such that the resulting system is topologically
ordered and the error correcting code corresponds to the
ground state. An explicit example of this Hamiltonian
construction is given later in Eq. (3). Errors in the code
amount to excitations.

Although the storage of quantum information is inter-
esting by itself, one would like to perform computations on
it. A natural approach in this context is that of considering
a topological stabilizer code in which certain operators can
be implemented transversally, which avoids error propa-
gation within codes. In terms of the corresponding topo-
logically ordered system, this means that operations are
implemented without selective addressing of the physical
subsystems that make up each memory. This is important
for physical applications.

Unfortunately, surface codes only allow the transversal
implementation of the CNOT gate. Then the problem arises
of whether there exists a topological stabilizer code in
which a universal set of gates can be performed trans-

versally. In fact, even at the level of general codes it is a
difficult task to find such codes [11]. For most codes,
additional tricks such as the generation of large cat states
are unavoidable. However, quantum Reed-Muller codes
[12] have the very special property of allowing the trans-
versal implementation of the gates:

 K1=2 �
1 0
0 i1=2

� �
; � �

I2 0
0 X

� �
; (1)

where X is the usual �1 Pauli matrix. Complemented with
the ability to initialize eigenstates of X and Z and to
measure these operators, these gates are enough to perform
arbitrary computations. In particular, the Hadamard gate
can be reconstructed and the set of gates fH;K1=2;�g is
known to be universal [13].

In this Letter we will construct a 3-dimensional system
showing topological quantum order in which the gates (1)
can be implemented. The ground state of the system is a
topological stabilizer code. No other topological code of
any dimension is known such that the transversal imple-
mentation of a universal set of gates is possible. In fact, a
key ingredient in our approach is the appearance of mem-
branes [14]. Our system is a 3-dimensional lattice with
qubits located at the sites, and the operations on the ground
state are implemented without any selective addressing of
these physical qubits. This is in contrast with the current
approach to topological computation which relies on the
topological properties of quasiparticle excitations instead
of ground states properties and needs a selective braiding
of quasiparticles to produce quantum gates. In fact our
system is Abelian, in the sense that monodromy operations
on excitations can give rise only to global phases. In
contrast, in the context of quasiparticle braiding Abelian
systems can never give universal computation. Therefore,
our results enlarge the range of applicability of the topo-
logical approach to quantum computation [15].

To achieve this goal, we start with a brief description of
the topologically ordered 3-dimensional condensed matter
systems [16] that we need for our construction. Consider a
lattice with coordination number 4 in which links are
colored with four colors as in Fig. 1(a). Color is introduced
as a bookkeeping tool to keep track of the different sites,
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links, faces, and cells in the 3D lattice. We will use red,
green, blue, and yellow labels (r, g, b, y) as colors. Assume
that the cells can also be colored, in such a way that, for
example, the boundary links of a red cell is a net with
coordination number 3 formed by green, blue, and yellow
links, as in Fig. 1(b). We call those 3D lattices with this set
of properties 3-colexes. For any color q, q links connect q
cells. A face lying between an r and a y cell has a boundary
link made up of g and b links. We call such a face an ry
face.

At each site of the lattice we place a qubit. We will be
considering operators of the form

 B�S :�
On
i�1

�fi ; ��X;Z; fi�
�

0 i =2 S;
1 i2 S

; (2)

where S is a given set of qubits in the system, n the total
number of qubits. The Hamiltonian proposed in [16] is

 H � �
X
c2C

BXc �
X
f2F

BZf ; (3)

where C and F are the cells and faces of the lattice,
respectively. It gives rise to topological order. In particular,
the degeneracy of the ground state is 2k with k � 3h1,
where h1 is the number of independent cycles of the 3-
manifold in which the lattice is built. In particular, in a 3-
sphere h1 � 0 and there is no degeneracy at all, whereas in
a 3-torus h1 � 3. In topology, h1 is known as a Betti
number [17].

The ground states j i of (3) are characterized by the
conditions

 8 c 2 C BXc j i � j i; (4)

 8 f 2 F BZf j i � j i: (5)

In fact, cell and face operators commute, and the ground
state is a stabilizer quantum error correcting code [1,9,18].
Those eigenstates j 0i for which any of the conditions (4)
and (5) are violated are excited states or, in code terms,
erroneous states.

Both excitations and degeneracy are best understood
introducing string and membrane operators. A q string,
for some color q 2 fr; g; b; yg, is a collection of q links, as
in Fig. 2(a). Strings can have end points, which are always

located at q cells. Along with every q string s we introduce
the string operator BZs . If j i is a ground state, then BZs j i
is, in general, an excited state, with excitations or quasi-
particles at those q cells that are end points of s. If s is
closed, that is, if it has no end points, BZs commutes with
the Hamiltonian (3).

Similarly, a collection of pq faces, for any colors p and
q, is a pq membrane, as in Fig. 2(b). For any pq mem-
brane m the corresponding membrane operator is BXm.
If j i is a ground state and m an rg membrane, for ex-
ample, then BXmj i is in general an excited state, with
excitations at those by faces that form the border of m.
These excitations are closed fluxes crossing the excited
faces. As an example, consider an ry membrane such as
the one in Fig. 2(b). Its border will create an ry flux, which
will cross those bg faces at the border of the membrane. If
m is closed, that is if it has no borders, then BXm commutes
with the Hamiltonian (3).

As long as we consider closed manifolds in 3D, closed
strings and membranes are enough to form a basis from
which any operator that leaves the ground state invariant
can be constructed. There are three key points here. First,
any two string or membrane operators which are equal up
to a deformation have the same action on the ground state,
which is in itself a uniform superposition generated by all
the possible local deformations. Second, a q-string opera-
tor BZs and a pq-membrane operator BXm anticommute if
and only if s crossesm an odd number of times. Otherwise,
they commute and the same is true if they do not share any
color. Third, not all colors are independent. For example,
the combination of an r, a g, and a b string gives a y string.
In fact , there are exactly 3 independent colors for strings
and 3 independent color combinations for membranes.
Therefore, all that matters about strings and membranes
is their color and topology, and the appearance of the
number 3 in the degeneracy is directly related to the
number of independent colors.

On the other hand, strings and membranes with a single
color are not enough to describe excitations. In general,
strings can form a net with branch points at which four
strings meet, one for each color [see Figs. 3(a) and 4(b)]
Likewise, membranes can form nets in which, for example,
a gb, a br, and an rg membrane meet along a line [see
Fig. 4(c)]. In order to study the exact properties of general
excitations, one can consider the elementary excitations

 

FIG. 2 (color online). (a) A b string consists of several b links
that connect b cells. (b) An ry membrane is made up of ry faces
linked by bg faces. bg faces are not shown here, only their links.

 

FIG. 1 (color online). (clockwise and lightest to darkest: yel-
low, green, red, blue) (a) A generic site in a 3-colex. (b) The
neighborhood of a particular b cell: faces are colored according
to the color of their visible side (they are br, bg, and by faces).
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attached to the operators X and Z at any particular site i of
the lattice. Let j i be a ground state. Then the state Zij i is
an excited state with four quasiparticles; see Fig. 3(a). The
state Xij i is an excited state with six elementary fluxes
which can be arranged in four single color closed fluxes, as
in Fig. 3(b). From this class of elementary excitations one
can build any general excitation.

If we restrict ourselves to closed manifolds, there is no
way in which we can have a ground state with twofold
degeneracy, or equivalently, that encodes a single qubit.
However, we will now explain how one can obtain such a
system by puncturing a 3-manifold. In particular, consider
any 3-colex in a 3-sphere. The ground state in this case is
nondegenerate. Now we choose any site in the lattice and
remove it. Moreover, we also remove the four links, six
faces, and four cells that meet at the site. As a result, we
obtain a lattice with the topology of a solid 2-sphere; see
Fig. 4(a). In order to calculate the degeneracy of the new
system, we note that we have removed one physical qubit
and two independent generators [16] of the stabilizer. This
is so because (i) although we remove 4 cells, three of the
cell operators can be obtained from the remaining one and
the rest of cell operators (see [16]), and (ii) although we
remove 6 faces, 5 of the face operators can be obtained
from the remaining one and the rest of face operators in the
corresponding cells. Then, from the theory of stabilizer
codes it readily follows that the new code encodes one
qubit. This can also be understood using strings and mem-
branes. The surface of the system is divided into four faces,
each of them being the boundary with one of the removed
cells. Thus, we can color these areas with each color of
the faces from the removed cells, as in Fig. 4(a). It is
natural to deform this sphere into a tetrahedron, and we
will do so. Then each of its faces can be the end point
of a string of the same color, and thus there is a single
independent nontrivial configuration for a string-net, as
depicted in Fig. 4(b). This configuration, of course, corre-
sponds to a string-net operator that creates one quasipar-
ticle excitation at each missing cell. In a similar fashion,
one can consider a net of membranes that creates the flux
configuration shown in Fig. 4(c). This net consists of six
membranes, meeting in groups of three at four lines that

meet at a central point. Observe that these excitations are in
exact correspondence with those in Fig. 3, when we see
them from the point of view of the removed site.

Although these string-net and membrane-net operators
just discussed can be used to introduce an operator basis for
the encoded qubit, this can be done in an alternative way
that is more convenient for practical implementations.
Given any operator O that acts on a single qubit, we will
use the notation Ô :� O�n for the operator that applies O
to each of the n physical qubits in the 3D lattice. Then, in
any tetrahedral lattice we have fX̂; Ẑg � 0, because the
total number of sites is odd: every 3-colex has an even
number of sites and we have removed one [see Fig. 4(d) for
n � 15]. Since both X̂ and Ẑ commute with the
Hamiltonian (4), they can be considered the X and Z
Pauli operators on the protected qubit. As usual, let j0i
and j1i be a positive and a negative eigenvector of Z,
respectively, so that they form an orthogonal basis for the
qubit state space. Let also jvi :� jv1i � � � � � jvni be a
vector state for any binary vector v 2 Zn

2 , Z2 � f0; 1g.
These binary vectors are usually introduced in error cor-
recting codes [10]. A basis for the protected qubit can be
constructed as follows:

 

FIG. 3 (color online). (a) The Z operator of a site creates one
quasiparticle at each of the cells that meet at the site. (b) The X
operator of a site creates the flux structure shown, which corre-
sponds to a flux excitation at each of the faces meeting at the site.

 

FIG. 4 (color online). (a) Here we represent the 3-sphere as R3

plus the point at infinity where we place the site to be removed.
The faces and links perpendicular to the colored sphere are
partially displayed but they continue to infinity. These faces
and links must be removed as well. After their removal, we
get a solid 2-sphere with a surface divided in four triangular
areas. This colored sphere represents the remaining 3-colex
itself. Then it can be reshaped to get a tetrahedron. (b) A non-
trivial string-net in the tetrahedron. Its end points lie on the
missing cells. (c) A nontrivial membrane-net configuration in the
tetrahedron. Its borders create fluxes that cross the missing faces.
Branching lines have been suitably colored. (d) The simplest
tetrahedral lattice. Here colors have been given both to links and
to cells. In the language of error correction, it is a ��15; 1; 5��
code, that is, it encodes a qubit in 15 physical qubits, whereas its
distance is 5 and so corrects up to 2 errors.
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 j0̂i :�
Y
c

�1� BXc 	j0i �
X
v2V

jvi; (6)

 j1̂i :�
Y
c

�1� BXc 	j1i � X̂j0̂i �
X
v2V

j�vi; (7)

where 0 :� �0 � � � 0	, 1 :� �1 � � � 1	, �v :� 1� v, c runs
over all cells in the lattice, and V is the subspace spanned
by vectors vc such that jvci � BXc j0i. In order to be able to
apply the K1=2 gate to the protected qubit in the tetrahedral
lattice, we must introduce a new requirement. We impose
that faces (cells) must have a number of sites which is a
multiple of four (eight). The simplest example of such a
tetrahedral lattice is displayed in Fig. 4(d). As we will show
below, it follows from these conditions that

 8 v 2 V wt�v	 
 0 mod 8; (8)

where the weight of a vector wt�v	 is the number of 1’s it
contains. But then we have

 K̂ 1=2j0̂i � j0̂i; K̂1=2j1̂i � il=2j1̂i; (9)

where l 
 n mod 8, l 2 f1; 3; 5; 7g. This means that the
global K̂1=2 operator can be used to implement K1=2 on the
encoded qubit, by repeated application in the case that l �

1.
We still have to prove (8). Let the weight of a Pauli

operator be the number of sites on which it acts nontri-
vially, and let us work modulo 8. Then (8) says that for any
product � � BXc1

� � �BXcm , wt��	 
 0. This follows by in-
duction on m. The case m � 0 is trivial. For the induction
step, we first observe that if wt��	 
 0, then wt��BXc 	 
 0
if and only if � and BXc share s sites with s 
 0; 4. But if
f1; . . . ; fj are those faces of c shared with some cell of �,
then s � wt�BZf1

� � �BZfj	. These faces are part of the 2D

color lattice that forms the boundary of the cell c, from
which it follows that s 
 0; 4 [19].

The � gate (1), known as the CNOT gate, is more
straightforward. Imagine that we take two identical tetra-
hedral lattices and superpose them so that corresponding
sites get very near. Then we apply �̂, that is, we apply �
pairwise. This can be achieved through single qubit opera-
tions and Ising interactions. As a result, it is easily checked
that we get a � gate between the protected qubits.

As for measurements, the situation is the same as in any
CSS code [20,21]. If we measure each physical qubit in the
Z basis, then we are also performing a destructive mea-
surement in the Ẑ basis. Then nondestructive measure-
ments of Ẑ can be carried out performing a CNOT gate
with the qubit to be measured as source and a j0̂i state as
target, and measuring the target destructively. Similarly, if
we measure each physical qubit in the X basis we are
performing a measurement in the X̂ basis. We can admit
faulty measurements, since the faulty measurement of a
qubit is equivalent to an error prior to it. Thus the measur-
ing process is as robust as the code itself and is topologi-
cally protected [7]. The results of the measurements must

be classically processed to remove errors and recover the
most probable code word.

Initialization is always a subtle issue in quantum com-
putation, whether topological or not, and it certainly de-
pends upon the physical implementation. In any case, even
if perfectly pure j0̂i or j�̂i states cannot be provided, one
can still purify them as much as necessary if their fidelity is
above 1

2 . To do this, only the CNOT gate �̂ and measure-
ments in the Ẑ and X̂ bases are necessary.

As a concluding remark, we observe that the lattice that
we have described so far unifies the strategies used in fault-
tolerant computation, such as transversal operations, with
the concept of a topologically protected quantum memory.
Note that this approach is very different from the usual one
in topological quantum computation, based on the braiding
of non-Abelian anyons in a two-dimensional system. In
fact, the topological order of the 3-dimensional system that
we have described is Abelian.

We acknowledge support from EJ-GV (H. B.), DGS
grant under Contract No. BFM 2003-05316-C02-01 and
EU Project INSTANS (M. A. M-D.), and CAM-UCM
Grant under reference 910758.

[1] A. Yu. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).
[2] M. H. Freedman, Proc. Natl. Acad. Sci. U.S.A. 95, 98

(1998).
[3] M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang,

Bull. Am. Math. Soc. 40, 31 (2003).
[4] J. Preskill, http://www.theory.caltech.edu/~preskill/ph219/

topological.ps.
[5] X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[6] X.-G. Wen, Quantum Field Theory of Many-Body Systems

(Oxford University, New York, 2004).
[7] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math.

Phys. (N.Y.) 43, 4452 (2002).
[8] S. B. Bravyi and A. Yu. Kitaev, quant-ph/9811052.
[9] D. Gottesman, Phys. Rev. A 54, 1862 (1996).

[10] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.
Sloane, Phys. Rev. Lett. 78, 405, (1997).

[11] E. Knill, R. Laflamme, and W. Zurek, quant-ph/9610011.
[12] E. Knill, R. Laflamme, and W. Zurek, quant-ph/9610011.
[13] P. O. Boykin et al., Inf. Proc. Lett. 75, 101 (2000); quant-

ph/9906054.
[14] A. Hamma, P. Zanardi, and X.-G. Wen, Phys. Rev. B 72,

035307 (2005).
[15] M. Freedman, M. Larsen, and Z. Wang, Commun. Math.

Phys. 227, 605 (2002).
[16] H. Bombin and M. A. Martin-Delgado, Phys. Rev. B 75,

075103 (2007).
[17] M. Nakahara, Geometry, Topology and Physics (IOP,

London, 2003).
[18] A. R. Calderbank et al., Phys. Rev. Lett. 78, 405 (1997).
[19] H. Bombin and M. A. Martin-Delgado, Phys. Rev. Lett.

97, 180501 (2006).
[20] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098

(1996).
[21] A. M. Steane, Proc. R. Soc. A 452, 2551 (1996).

PRL 98, 160502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
20 APRIL 2007

160502-4


