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The effect of noise on the nonlinear photoionization of an atom due to a femtosecond pulse is
investigated in the framework of the stochastic Schrödinger equation. A modest amount of white noise
results in an enhancement of the net ionization yield by several orders of magnitude, giving rise to a form
of quantum stochastic resonance. We demonstrate that this effect is preserved if the white noise is replaced
by broadband chaotic light.
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The interplay between noise and the nonlinear response
of a physical system described by classical mechanics has
led to intriguing effects. A paradigm is stochastic reso-
nance (SR), whereby a nonlinear system responds more
strongly to coherent subthreshold driving in the presence of
an appropriate amount of noise [1–3]. Despite prominent
demonstrations of classical SR in ample variety, only a few
quantum mechanical examples have been studied, possibly
due to subtle features of the quantum evolution [3]. The
concept of SR in the quantum domain was originally
suggested in the context of two-level conductance switch-
ing of driven mesoscopic metals [4]. This proposition
sparked a number of theoretical studies on quantum sto-
chastic resonance in double-quantum well structures [5],
the so-called incoherent and coherent SR in driven dissi-
pative spin-boson systems [6], in the bistable photon-field
dynamics in micromaser [7], and in the electron shelving in
a single ion [8]. Experiments using NMR spectroscopy of
water [9], and a very recent one in the radio-frequency
controlled nanomechanical beam oscillator [10], have es-
tablished the properties of quantum SR in two-level sys-
tems (TLS). These studies are mostly restricted to the
quantum analog of the classical double-well dynamics.
Yet, they have provided valuable insight into the noise-
induced dynamics of quantum systems.

Following quite a different path of research, there is a
rapidly growing activity in the general area of controlling
quantum phenomena [11]. A common approach to exercise
the control exploits the nonperturbative interplay between
a purposefully designed optical field from a laser and the
target quantum system, such as an atom or molecule [12].
A fundamental control goal is the manipulation of atomic
or molecular interaction to steer the quantum system to-
wards a desired state [11,12]. An accurate knowledge of
the effect of noise on quantum systems would be very
helpful to achieve full control. Their response to noise
has been rarely studied so far [13]. One may even wonder
whether the presence of noise offers new possibilities of
quantum control.

Here, we will demonstrate the existence of a stochastic
resonance-like effect in a generic quantum situation be-
yond the two-level systems. For this purpose, we consider a

quantum system having a finite binding potential with
mixed, discrete, and continuous spectrum which is coupled
to two external forces: First, a nonresonant coherent optical
driving and, second an incoherent perturbation which may
result from some form of environment. These situations are
sufficiently general to be achieved in a variety of quantum
systems such as in nuclear motion of diatomic molecules,
in Josephson junction devices, and in active single-electron
atoms.

Let us concentrate on the latter example in the form of
the simplest single-electron atom, i.e., the hydrogen atom.
Because of the application of a linearly polarized laser field
F�t�, the electron dynamics is effectively confined to one
dimension along the polarization axis. The Hamiltonian for
such a simplified (yet reliable [14]) description of the
hydrogen atom, which is here also perturbed by a stochas-
tic force ��t�, reads as (atomic units, @ � m � e � 1, are
used unless stated otherwise)

 H�x; t� �
p̂2

2
� V�x� � xfF�t� � ��t�g; (1)

where x is the position of the electron and p̂ � �i@=@x is
the momentum operator. The binding potential is approxi-
mated by a nonsingular Coulomb-like form V�x� �
�1=

����������������
x2 � a2
p

. Such a soft-core binding potential with
parameter a has been routinely employed to study atomic
dynamics in strong laser fields [15]. It successfully de-
scribes many experimental features of multiphoton or tun-
nel ionization [14], and the observation of the plateau in the
higher harmonic generation spectra [15]. The external per-
turbations (last term in Eq. (1)) is dipole coupled to the
atom. The laser field is a nonresonant femtosecond pulse
(duration 20 optical periods) described as F�t� �
f�t�F0 sin�!t� ��. Here, f�t� defines a smooth pulse en-
velope with F0 and! denoting peak amplitude and angular
frequency, respectively. The noise term ��t� is a zero-mean
h��t�i � 0, Gaussian white noise with autocorrelation
function

 h��t���t0�i � 2D��t� t0�; (2)

and intensity D [16].
Because of the stochastic nature of the Hamiltonian, the

quantum evolution is nondeterministic. Thus, an averaging
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over a large number of realizations of the stochastic force is
required in order to produce a statistically meaningful solu-
tion of the time-dependent stochastic Schrödinger equation

 i
@��x; t�
@t

� H�x; t���x; t�: (3)

For a given realization, the numerical solution of the
Schrödinger equation amounts to propagating the initial
wave function j�0i using the infinitesimal short-time sto-
chastic propagator, U���t� � exp��i

R
t��t
t H�x; t�dt�.

One can compute U���t� using the standard FFT split-
operator algorithm [17], with the stochastic integration in
the exponential interpreted in the Stratonovitch sense [16].
Successive applications of the propagator U���t� advance
j�0i forward in time. Note that the initial state j�0i is the
ground state of the system having a binding energy of Ib �
�0:5 a:u:. This is obtained by the imaginary-time relaxa-
tion method for a2 � 2 [14]. To avoid parasitic reflections
of the wave function from the grid boundary, we employ an
absorbing boundary [17]. The observable, such as the
ionization flux leaking in the continuum on one side, is
defined as JR�xR; t� � Re���p̂��xR , where xR is a distant
point (typically 500 a.u.) near the absorbing boundary. The
ionization rate is integrated over a sufficiently long time
interval to obtain the corresponding total ionization proba-
bility, P �

R
1
0 JR�xR; t�dt.

First, we will discuss the response of the atom interact-
ing with a short but strong laser pulse only. It produces
(nonlinear) ionization of the atom which is most easily
understood, especially in the time domain, with the picture
of tunneling ionization. The periodic bursts of the ioniza-
tion flux are produced close to those times when the
effective potential U�x; t� � V�x� � xF�t� is maximally
bent down by the dipole-coupled laser field. Such temporal
evolution of the ionization flux for a 20 cycle laser pulse is
illustrated in Fig. 1 (shown in the top parts) with two
different peak amplitudes F0 � 0:05 a:u: [Fig. 1(a)] and
F0 � 0:02 a:u: [Fig. 1(b)].

Time-resolved ionization peaks separated by the optical
period (2�=!) are clearly visible for both peak field am-
plitudes. In addition, JR�t� shows a complex interference
pattern due to the modulated Coulomb barrier in Fig. 1(a).
However, quite strikingly, if F0 is reduced to 0.02 a.u., the
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FIG. 1 (color online). Nonlinear ionization flux JR�t� (lower
part of plots) induced by a 20 optical cycles laser pulse shown in
the respective upper plots with ! � 0:057, � � 0 and peak
amplitude, F0 � 0:05 (a), and F0 � 0:02 (b). The pulse envelope
f�t� is unity except single-cycle sinusoidal rising and falling
edges. The pulse has a narrow spectral width �!pulse � 0:0028.
The threshold for over barrier ionization is Fth � 0:067 a:u:.
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FIG. 2 (color online). Ionization flux for a weak laser pulse
F0 � 0:02, with three values of noise amplitude

����
D
p

(a) 0.00024,
(b) 0.0015, and (c) 0.018. Background featureless curves show
the corresponding purely noise-driven (F0 � 0) flux. The flux is
averaged over 50 realizations.
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ionization collapses by around 5 orders of magnitude as
shown in Fig. 1(b). One can conclude that the photoioni-
zation dynamics is highly nonlinear, and, in particular, it
exhibits a form of ‘‘threshold’’ dynamics where the thresh-
old is created by the condition for over barrier ionization.

Almost nothing is known about the quantum analog of
SR in such ‘‘threshold-crossing’’ quantum devices [2].
Naturally, in the context of SR, the question arises if noise
can recover the strong periodic ionization flux for the
‘‘weak’’ laser pulse. To answer this question, we show
the ionization flux averaged over 50 realizations in
Fig. 2(a) when a small amount of noise is added to the
weak laser pulse (F0 � 0:02). Note that the noise is
switched on for the same time interval as the 20 cycle laser
pulse. One can see that for very small noise amplitude����
D
p
� 0:00024, the periodic structure in atomic ionization

gets amplified by 1 order of magnitude as compared to the
case of the laser pulse alone [compare Fig. 1(b) with
Fig. 2(a)]. However, one might ask if such an enhancement
could be due to the noise alone. Contrary to the coherent
excitation, the noise alone produces an, on average, fea-
tureless ionization profile [see Fig. 2]. Here, the noise
causes ionization from the atomic ground state, which is
different from the studied ionization of the Rydberg atoms
[18]. This purely stochastic ionization for the feeble noise����
D
p
� 0:00024 is considerably smaller than the corre-

sponding case of laser pulse with noise [Fig. 2(a)].
Hence, the observed net enhancement can be attributed
to a nonlinear quantum interaction between coherent pulse
and noise, which is also beyond the response to a simple
quantum addition of the individual external fields.

As the noise level is further increased, we observe an
enhancement of the periodic ionization profile by about 3
orders of magnitude as shown in Figs. 2(b) and 2(c).
However, the increase in noise level also causes the sto-
chastic ionization curve to rise rapidly. Eventually, for
strong noise case, the coherent structures tend to wash
out, and the noise dominates the ionization [Fig. 2(c)].
This suggests the existence of an optimum ratio between
the noise and laser amplitudes which leads to a maximum
ionization enhancement.

To quantify the quantum stochastic enhancement, we
define the enhancement factor

 � �
Ps�n � P0

P0
(4)

with P0 � Ps � Pn. Here, Ps�n denotes the average ion-
ization probability (IP) due to the presence of the laser
pulse with noise, and Ps and Pn are the individual IP for
laser pulse and noise, respectively. Although this is differ-
ent compared to the quantifiers commonly used [2,3], � is
more suitable for our case. One can verify that a zero value
of � corresponds to the case when either the laser pulse
(Ps 	 Pn) or the noise (Ps 
 Pn) dominates.
Furthermore, � characterizes a truly nonlinear quantum
interplay as it also vanishes if we assume a ‘‘linear’’

response as a sum of individual IP, Ps�n � Ps � Pn. In
Fig. 3, we have plotted the enhancement factor � versus
the noise amplitude. It exhibits a sharp rise, followed by a
maximum at a certain value of the noise (point B), and then
a gradual fall off. It is worth mentioning that only a modest
noise to laser ratio (

���������
Dopt

p
=F0 � 0:075) is required to reach

the optimum enhancement (here �max � 36), as indicated
by a typical optimal pulse shape in the inset of Fig. 3.

The enhancement in photoionization can be understood
by a simple two-step mechanism. First, starting from the
ground state, the atom absorbs energy from the noise
leading to an exponential population of energy levels. In
a second step, the laser field causes ionization from the
electron wave function exponentially distributed over
many (excited) states. This simple picture is indeed veri-
fied by separating the laser irradiation and the noise input
in time. A sequential application of the noise followed by
the laser pulse leaves the SR curve almost invariant. On the
contrary, reversing the sequence, i.e., laser pulse first and
then noise, destroys the SR. Note that due to the level
structure of the atom (many bound states and continuum),
there is no obvious noise-induced time scale as known
from two-level systems. Thus, the optimum enhancement
does not show the characteristic synchronization between
coherent and noise-induced time scales as in the TLS [2,3].
Indeed, in some classical systems, SR has been shown to
exist without any explicit synchronization requirement
[19]. Atomic ionization under a driving laser field provides
the quantum analog to synchronization free SR.

It is worth mentioning that the features presented here
are robust with respect to the choice of parameters. For
example, we have observed the quantum SR for pulses
lasting from a few cycles to few hundred cycles and for !
ranging over more than 1 order of magnitude from infrared
to near UV frequencies.
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FIG. 3. The enhancement in photoionization due to quantum
SR. The points marked A-C correspond to the noise amplitudes
of Fig. 2(a)–2(c), respectively. Inset: A typical optimal pulse for
point B with
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� 0:0015, F0 � 0:02.
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The intensity required for the thermal white noise ren-
ders an experimental test of our prediction quite chal-
lenging. However, one could think of replacing the white
noise by a quasiwhite noise, i.e., chaotic light with a fi-
nite but broad bandwidth �!. This can be realized by
adding a large number (here 1024) of independent phase-
randomized frequency modes. The inset of Fig. 4 shows an
example of a characteristic spectral density of such a
broadband source having �! � 20 eV (0.75 a.u.).
Modern pulse shaping techniques can generate chaotic
light pulses with a bandwidth as large as 30 eV [20,21].
In Fig. 4, we have plotted � defined in Eq. (4) vs the rms
amplitude of the chaotic light (analogous to the noise
amplitude) for the previously used coherent pulse. One
can see that such chaotic light can preserve the features
of quantum SR, with an almost identical optimum com-
pared to the one for the white noise case of Fig. 3. This
observation may create new possibilities in quasicoherent
control schemes of similar quantum systems.

In conclusion, we have demonstrated a new form of
quantum stochastic resonance in the dynamics of the sim-
plest atomic system for the first time. This generalized
quantum SR leads to a dramatic enhancement (by several
orders of magnitude) in the nonlinear ionization when a
modest amount of optimum white noise is added to the
weak few cycle laser pulse. The same effect is also
achieved if one uses (realizable) broadband chaotic light
instead of white noise. We emphasize that the effect is
robust with respect to a range of experimentally accessible
parameters. In addition to substantially broadening the
existing paradigm for quantum SR to generic atomic and
molecular systems, our results might provide valuable in-
sight into the possible role of noise in designing optimal
quasicoherent quantum control schemes [11,21]. Finally,

analogous effects are also expected in other systems such
as in photo-fragmentation of anharmonic diatomic mole-
cules [22,23], and in the recently observed multiphoton
transitions in current-biased Josephson devices [24], pro-
vided a coupling with an incoherent perturbation exists.

We thank A. Kenfack, W. Peijie, N. Singh,
A. Buchleitner, and P. Hänggi for fruitful discussions.
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FIG. 4 (color online). Enhancement induced by a broadband
chaotic light. The peak amplitude and frequency of the 20 cycle
laser pulse are F0 � 0:02 and ! � 0:057, respectively. The
bandwidth of chaotic light is �! � 0:75 with central frequency
!0 � 0:375. Inset: power spectral density (PSD) of the chaotic
light compared to the one for the white noise.
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