Comment on "Röntgen Quantum Phase Shift: A Semiclassical Local Electrodynamical Effect?"

Recently, Horsley and Babiker [1] reported semiclassical calculations of the Röntgen and the Aharonov-Casher phase shifts. Their derivation shed light on a quantum phenomenon without using the full apparatus of quantum theory. They argued that the Röntgen phase shift is due to the action of the nonvanishing three-dimensional (3D) force $\mathbf{F}=\nabla(\mathbf{d} \cdot \mathbf{E})$, where $\mathbf{E}=\mathbf{v} \times \mathbf{B}$. Here, the main conclusion is as in [1], i.e., that the mentioned phase shifts can be derived using a semiclassical calculation. However, instead of the 3D force \mathbf{F} from [1] the Lorentz invariant expression for the 4D force K^{a} is introduced.

First, in [1], F is written in the dipole rest frame S^{\prime}, since the electric field (it is \mathbf{E}^{\prime}) is obtained by means of the usual transformations (UT) of B [e.g., [2], Eq. (11.149)] from the laboratory frame S to S^{\prime}, and \mathbf{d} from [1] is also in S^{\prime}; i.e., it is \mathbf{d}^{\prime}. For comparison with experiments the force has to be in S and not in S^{\prime}. Furthermore, it is proved in [3] that the UT of \mathbf{E}, \mathbf{B} are not the Lorentz transformations (LT) and that they have to be replaced by the LT of the corresponding 4D geometric quantities.

Here, as in [4], we deal with 4D geometric quantities that are defined without reference frames. They will be called the absolute quantities (AQs). The notation is the same as in [4]. Different covariant expressions for a charged particle with a dipole moment are recently presented in [5]. (Here we consider an uncharged particle.) They include, e.g., the Lagrangian and the equations of motion for 4-position. However the usual covariant formulation deals with components, which are implicitly taken in some basis, mainly the standard basis $\left\{e_{\mu} ; 0,1,2,3\right\}$ of orthonormal 4 -vectors with e_{0} in the forward light cone. In [4] we have already generalized the interaction term from the Lagrangian [5] and expressed it in terms of AQs as $-(1 / 2) F_{a b} D^{a b}$. Also, in [4], $D^{a b}$ and $F^{a b}$ are decomposed and written in terms of AQs, the electric and magnetic dipole moments d^{a} and m^{a} and 4vectors E^{a} and B^{a}. Here the equation of motion for the 4position, [5] Eq. (11), is similarly generalized as $m \ddot{x}^{c}=$ $K^{c}=(1 / 2) D^{a b} \partial^{c} F_{a b}$ (the dot means the derivation with respect to the proper time s). This 4D force K^{a} replaces the forces written with the 3D d, m and \mathbf{E}, \mathbf{B} from [1] and many others.

For comparison with the usual formulation with the 3vectors, one needs to write the representation of the AQ K^{a} in the $\left\{e_{\mu}\right\}$ basis as $K^{a}=K^{\alpha} e_{\alpha}=\left[(1 / 2) D^{\mu \nu} \partial^{\alpha} F_{\mu \nu}\right] e_{\alpha}$. Then [4], we also need to choose the frame of "fiducial"
observers in which the observers who measure E^{a}, B^{a} are at rest. That frame with the $\left\{e_{\mu}\right\}$ basis will be called the e_{0}-frame. In the e_{0}-frame the velocity of fiducial observers $v^{a}=c e_{0}$ and $E^{0}=B^{0}=0$. In that frame K^{α} is the sum of two terms, one with the electric dipole $\left(1 / c^{2}\right) \times$ $\left[c d_{0}\left(u_{\nu} \partial^{\alpha} E^{\nu}\right)-c^{2}\left(d_{\nu} \partial^{\alpha} E^{\nu}\right)+c^{2} \varepsilon^{0 i j k} u_{j} d_{k} \partial^{\alpha} B_{i}\right]$ (responsible for the Röntgen effect) and another one (responsible for the Aharonov-Casher effect) in which d^{μ} is replaced by m^{μ}, while E^{μ} and B^{μ} are interchanged. The last term in the above square braces describes the direct action of the magnetic field on the electric dipole moment. This is a very important difference relative to all previous treatments, e.g., [1].

The laboratory frame has to be taken as the e_{0}-frame for comparison with experiments. Then, for the Röntgen effect from [1], $m^{\mu}=0, E^{\mu}=0, B^{\mu}=\left(0, B^{1}, B^{2}, 0\right)$, and $u^{\mu}=$ $\left(u^{0}, u^{1}, u^{2}, 0\right)$, since in $S^{\prime} u^{\prime \mu}=(c, 0,0,0)\left(u^{a}=d x^{a} / d s\right.$ is the 4 -velocity of the particle). K^{α} becomes $K^{\alpha}=$ $\varepsilon^{0 i j k} u_{j} d_{k} \partial^{\alpha} B_{i}, \quad$ or explicitly, $\quad K^{0}=K^{3}=0, \quad K^{1,2}=$ $d_{3}\left[u_{2} \partial^{1,2} B_{1}-u_{1} \partial^{1,2} B_{2}\right]$. This force is in S and not in S^{\prime} as in [1]. Also K^{α} is not zero even in the case when the electric dipole moment is aligned parallel to the magnetic line charge. Only in the case when S^{\prime} is chosen to be the e_{0}-frame then it will be $K^{\alpha}=0$, but that case is not physically realizable. The second term in K^{α} gives the analogous result for the Aharonov-Casher effect. Hence, as in [1], both phase shifts could be calculated using the concept of force, but not the 3D force than the 4D force K^{a}. Then the phase shifts can be calculated, e.g., as in [6].

Tomislav Ivezić*
Ruđer Bošković Institute
Post Office Box 180, 10002 Zagreb, Croatia

Received 3 December 2006; published 12 April 2007
DOI: 10.1103/PhysRevLett.98.158901
PACS numbers: 03.65.Vf, 03.65.Sq, 03.65.Ta
*Electronic address: ivezic@irb.hr
[1] S. A. R. Horsley and M. Babiker, Phys. Rev. Lett. 95, 010405 (2005).
[2] J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998), 3rd ed.
[3] T. Ivezić, Found. Phys. 33, 1339 (2003); Found. Phys. Lett. 18, 301 (2005); Found. Phys. 35, 1585 (2005).
[4] T. Ivezić, Phys. Rev. Lett. 98, 108901 (2007).
[5] A. Peletminskii, S. Peletminskii, Eur. Phys. J. C 42, 505 (2005).
[6] J. Anandan, Int. J. Theor. Phys. 19, 537 (1980).

