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The information processing capacity of a complex dynamical system is reflected in the partitioning of
its state space into disjoint basins of attraction, with state trajectories in each basin flowing towards their
corresponding attractor. We introduce a novel network parameter, the basin entropy, as a measure of the
complexity of information that such a system is capable of storing. By studying ensembles of random
Boolean networks, we find that the basin entropy scales with system size only in critical regimes,
suggesting that the informationally optimal partition of the state space is achieved when the system is
operating at the critical boundary between the ordered and disordered phases.
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Introduction—Complex dynamical systems generically
possess state spaces that are partitioned into disjoint basins
of attraction. Within each basin, state trajectories flow to a
single attractor, which, in general, may be a steady-state
fixed point, an oscillation—including limit cycles—or a
strange (chaotic) attractor. Such classification of states via
attractors and their basins of attraction constitutes the
information processing ability of a complex system and
represents a type of associative memory: All states in a
basin are in the same class in that they are all associated
with the same attractor. The complexity of information that
such a system is capable of processing depends on the
manner in which its state space is partitioned, which, in
turn, is largely determined by the dynamical regime of the
system. By using a novel network parameter, the basin
entropy, and the model class of random Boolean networks,
for which there exist well-defined and extensively studied
notions of ordered, critical, and chaotic dynamics [1– 4],
we show here that the informationally optimal partition of
the state space is achieved when the system is operating at
the critical boundary between the ordered and disordered
regimes.

Random Boolean networks (RBNs) are commonly
studied as generic models of dynamically interacting
entities, such as gene regulatory networks. A RBN, ori-
ginally introduced by Kauffman [5], consists of n nodes,
each of which can have two possible values (0 and 1). Each
node receives input from k randomly chosen nodes that
determine its value at the next time step via a randomly
chosen Boolean function assigned to that node. The
output of the function is chosen to be 1 with probability
p, known as the bias [6]. A state of the network is the
collective activity of the nodes. All nodes are updated
synchronously, and the network transitions from one
state to another, thus tracing out a state trajectory that
eventually flows into a series of periodically recurring
states called an attractor. The transient states that flow
into an attractor constitute the basin of attraction for that
attractor.

In the limit of large n, RBNs exhibit a phase transition
between a dynamically ordered and a chaotic regime.
Depending on the parameters k and p, small perturbations
die out over time in the ordered regime and increase expo-
nentially in the chaotic regime (see, e.g., [4]). Networks
that operate at the boundary between the ordered and the
chaotic phase have been of particular interest as models for
gene regulatory networks, as they exhibit complex dynam-
ics combined with stability under perturbations [7–10].
The average lengths of attractors have been extensively
studied numerically and analytically for a wide range of
Kauffman networks. In the chaotic phase, the average
length of attractors increases exponentially with system
size [6]. In the highly chaotic case, where the state space
of a RBN can be approximated by a random map, the
expected number of attractors increases linearly with sys-
tem size [11]. In the ordered phase, where the fraction of
nodes that freeze to a constant value approaches one, the
average number and length of attractors is bounded [2,12].
In contrast to former assumptions, it has been recently
shown that the average number and length of attractors
increases superpolynomially in critical Kauffman net-
works [13].

In this Letter, we introduce a new network parameter,
the basin entropy h of a Boolean network, and show that
this quantity increases with system size in critical ensem-
bles, whereas it reaches a fixed value in the ordered and in
the highly chaotic phase. The partition of the state space
into basins of attraction induces a probability mass func-
tion over the state space, with the weight of each basin
defined by its size relative to the other basins. The basin
entropy (hereafter, simply entropy) of a network is then
calculated from this probability distribution. The partition
that a given network imposes on its state space is not
unique and, thus, neither is its entropy. Certain network
instances in the ordered phase may have the same entropy
as some networks in the chaotic phase, and thus it becomes
necessary to study the average entropies of network
ensembles.
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In the informational sense, the entropy of a Boolean
network is a measure of the uncertainty about its dynamical
behavior. In a network with higher entropy, more informa-
tion is needed to describe its future behavior, and its
effective complexity is higher [14]. Thus, if the network
is viewed as a classifier, then the entropy is a measure for
the complexity of this classification process. Herein, we
show that an increase in such classification complexity as a
function of system size occurs only when the system is
poised at the boundary between an ordered and a disor-
dered phase.

A Boolean network B � �N;F� is defined by the set N of
its nodes, N � f1; . . . ; ng, and the set F of their correspond-
ing Boolean updating functions, F � ff1; . . . ; fng, with
fi: f0; 1gk ! f0; 1g. The value xi of node i at time t� 1
is determined by the values of its k controlling elements as
xi�t� 1� � fi�xi1�t�; . . . ; xik�t��.

The sensitivity s of a network, defined as the average
sensitivity of the Boolean functions used in the network
[15], is an order parameter that specifies the average num-
ber of nodes that are affected by a perturbation of a random
node. Thus, an average sensitivity of s � 1 indicates that a
perturbation of a random node is on average propagated to
one other node. This defines the point of phase transition
between the ordered regime (s < 1), where perturbations
die out over time, and the chaotic regime (s > 1), where
even small perturbations increase over time [4]. In classical
Kauffman networks, the relationship between the network
parameters k and p and the average sensitivity s is s �
2kp�1� p� [15]. The logarithm of this parameter may also
be interpreted as the Lyapunov exponent � � logs [3].

In the following, we study ensembles B�n; k; p� of
Boolean networks with n nodes parametrized by k and p.
For p � 1

2 , all networks of the ensemble have equal proba-
bility. In the general case, where certain Boolean functions
might be chosen with different probabilities, we indicate
by �i the probability of a certain network instance i in the
ensemble. We will also find it convenient to refer to the
ensemble of networks B�n; s� with average sensitivity s.

Average basin entropy.—Any Boolean network B 2
B�n; s� partitions its state space into attractors and corre-
sponding basin states. The weight w� of an attractor � is
the length of its attractor plus the number of basin states
draining into that attractor, normalized by the size of the
state space (2n), so that

P
�w� � 1. The basin entropy h of

a network B is defined as

 h�B� � �
X
�

w� lnw�: (1)

The average entropy hhi of an ensemble B�n; s� of net-
works is defined as

 hhi�B�n; s�� � �
X

i2B�n;s�

�i
X
�i

w�i lnw�i; (2)

where �i is the probability of a network instance in the
ensemble. To determine the state space partition of a net-

work exactly, one has to link each state to its attractor. We
performed an exhaustive computation of the state space
partition to estimate the average entropy of the ensembles
B�n; k; p � 1=2�, with n � 10; . . . ; 20 and k � 1; . . . ; 10
(for every ensemble, the average was taken over more than
1000 networks). As shown in Fig. 1, the average entropies
of the critical ensembles k � 2 grow with n, whereas the
average entropies of the chaotic ensembles k > 2 approach
a finite value of approximately 0.61, independent of n.
Before considering the scaling behavior of the average
entropy in critical network ensembles B�n; s � 1�, we
will discuss the average entropy in the chaotic regime in
the limit of large n.

When k reaches n, the ensemble B�n; k � n; p � 1=2�
can be identified with the random map model, which is a
simple disordered system with deterministic dynamics. For
each state in the state space, another state (not necessarily a
different one) is randomly chosen as its successor. Thus, a
random map can be regarded as an unbiased Boolean net-
work where each node depends on all n variables. The
average sensitivity of the random map is thus s � n=2, and
its average entropy can be expressed as

 hhi�B�n; s � n=2�� � �
X2n
j�1

gjwj lnwj; (3)

where the sum is taken over all possible weights wj 2
f1=2n; 2=2n; . . . ; 1g, multiplied by the normalized fre-
quency gj of their occurrence in the ensemble B�n; s �
n=2�.

As n!1, we may replace the sum by an integral,
where g�w� dw indicates the average number of attractors
with a weight between w and w� dw:
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FIG. 1. Average entropy in ensembles B�n; k; p � 1=2� with
n � 10; . . . ; 20 and k � 1; . . . ; 10. The average entropy grows
with n for the critical ensembles B�n; k � 2; p � 1=2� and
approaches a finite value in the chaotic regime independent of n.
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 lim
n!1
hhi�B�n; s � n=2�� � �

Z 1

0
g�w�w log�w�dw: (4)

Derrida derived the following analytical expression for the
distribution of g [16]: g�w� � 1

2w
�1�1� w��1=2. Substi-

tuting this expression into Eq. (4) yields limn!1hhi�
�B�n; s � n=2�� � 2�1� ln2� � 0:613 71, which is the
average entropy of the random map in the limit of large
n. It is remarkable that ensembles of small network sizes
already approach this value soon after entering the chaotic
regime (see the horizontal black line in Fig. 1).

Before discussing the scaling behavior in critical ensem-
bles, let us briefly recapitulate the concept of irrelevant and
relevant nodes in a network [2,6] and their meaning in the
context of entropy. A node that is updated by a constant
Boolean function is a frozen node. All nodes that even-
tually take the same constant value on every attractor are
called clamped nodes [12]. These nodes build the frozen
core of the network. A relevant node is one that eventually
influences its own state. The number and the length of the
attractors in a network can be determined from the set of
relevant nodes.

Nonfrozen nodes that do not influence their own state
are irrelevant for the attractor dynamics and are, therefore,
called nonfrozen irrelevant nodes. As soon as the network
reaches an attractor, the future behavior of such a non-
frozen irrelevant node can be determined as a function of
only the relevant nodes. When we add a nonfrozen irrele-
vant node to a network, the number of states flowing into
each of the attractors doubles. Thus, the attractor weights
do not change by adding or removing nonfrozen irrelevant
nodes. Further, the addition of a frozen node does not, on
average, change the attractor weight distribution. Thus, the
average entropy of an ensemble depends only on the
organization of its relevant nodes. A set including all
relevant nodes can be obtained by iteratively removing
nodes that freeze and become part of the frozen core and
nonfrozen nodes that influence only irrelevant nodes. The
remaining set is also referred to as the computational core
of a network and exists only in the critical and chaotic
regime with high probability [17,18]. The organization of
the relevant components is crucial for the understanding of
the entropy of the entire network, since it can be calculated
by adding the entropies of the independent nonconnected
relevant components.

For networks in the ordered regime, the number of rele-
vant nodes approaches a finite limit for large system sizes
[19], and the proportion of frozen nodes in the network
approaches one [2]. Therefore, the mean number of attrac-
tors, and thus the average entropy, are bounded for large
systems. These results indicate that increasing the system
size does not, on average, increase the entropy of networks
in the ordered or chaotic regimes, implying that complexity
of classification cannot be increased in these regimes.

Critical ensembles.—We first treat the special case of a
critical network with connectivity k � 1, as in this case the
scaling behavior can be discussed analytically. In these

networks, all nodes are updated by either the Boolean
‘‘copy’’ or the ‘‘invert’’ function. The topology of such
networks consists of loops and trees rooted in loops. Only
nodes on loops are relevant. Frozen nodes do not exist in
these networks. Consequently, attractors of the same length
have the same weight. The entropy of a critical k � 1
network is the sum of the entropies of its loops. In the
limit of large n, the number of relevant nodes scales as
nr 	 �

�n
2 �

1=2 (a critical k � 1 network is a random mapping
digraph, and the number of relevant nodes is equivalent to
the number of vertices on cycles; see, e.g., [20]). The
probabilities of having nl loops of size l are independent
and Poisson distributed with mean � � l�1 [21]. If we
approximate the entropy of a loop of size l by hl 
 l ln2
and take the sum over the expected number of such loops
for l � nr, we get the following scaling behavior for the
entropy in critical k � 1 networks [22]:

 hhi 	
Xnr
l�1

hl
l
� ln2

�
�n
2

�
1=2
: (5)

In networks with a connectivity higher than one, relevant
nodes may depend on more than just one relevant node. In
addition to simple loops, such networks may contain com-
plex relevant components with cross-links and attractors of
the same length do not necessarily have the same weight
any more. The scaling behavior of relevant nodes in a
general class of critical random Boolean networks and
structural properties of the complex relevant components
were recently discussed in an extraordinary series of pub-
lications by Drossel, Kaufman, and Mihaljev [19,23,24].
The key result of their work is that the number of relevant
nodes nr scales as nr 	 n1=3 with the system size in all
critical ensembles with k > 1. Furthermore, the proportion
of relevant nodes that depend on more than one relevant
input approaches zero with growing n. From Theorem 1.3
in Ref. [25], we find that the expected number of nodes on
simple loops increases if the probability of relevant nodes
depending on one relevant input increases. As we already
discussed the scaling behavior of the average entropy of
simple loops, it follows that the average entropy in all
critical ensembles increases with system size. Figure 2
shows that the average entropy grows with the expected
number of relevant nodes in the critical ensembles k �
1; 2; 3 for n � 20; . . . ; 500 [26]. The lower average entropy
in the k � 3 ensemble compared to the k � 2 ensemble
might be explained by a higher proportion of frozen nodes.

Remarks.—Our findings are particularly relevant to the
study of biological networks, as the information processing
in living systems is based on massively parallel dynamics
in complex molecular networks that underlie ontogeny,
immune responses, and cognitive behavior. Kauffman hy-
pothesized that attractors of genetic regulatory networks
can be viewed as cell types [7]. If so, then cell types, like
classes in parallel processing networks, drain basins of
attraction. Recent experimental evidence supports this hy-
pothesis [27].
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The cell is also able to respond to changes in its environ-
ment by changing its own behavior. Examples of such
decisions include initiation of cell division (cell cycle),
execution of specific functions (differentiation), pro-
grammed cell death (apoptosis), and other cellular func-
tional states. Such decision-making motivates the view that
a living system ‘‘classifies’’ its environment according to
its steady states. When viewed in terms of information
processing, a cell ‘‘reads’’ the information in its environ-
ment, propagates that information through its intracellular
networks of interacting biomolecules, and responds by
exhibiting a corresponding steady state. The information
in the steady state reflects the information in the environ-
ment. If maximal classification complexity confers a se-
lective advantage, our results lend support to the long-
standing hypothesis that living systems are critical.

The classical Kauffman network ensembles studied
herein have characteristics that do not reflect certain as-
pects of biological networks. First, the synchronous updat-
ing scheme does not reflect the fact that elements in
biomolecular networks exhibit different time scales.
Second, the organization of biological networks is highly
modular, containing many loosely coupled modules of
similar sizes. In contrast, most relevant nodes in random
Boolean networks are, with high probability, organized
into one giant component. Since the total entropy is the
sum of the entropies of the components, a growing number
of such regulatory modules will certainly increase entropy,
independent of the updating scheme. Thus, understanding
the entropy of complex relevant components under differ-
ent updating rules is an important topic for future studies.
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FIG. 2. The average entropy hhi of critical network ensembles
scales with the number of relevant nodes as	n1=2 for k � 1 and
as 	n1=3 for k � 2; 3.

PRL 98, 158701 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 APRIL 2007

158701-4


