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Spin Freezing in Geometrically Frustrated Antiferromagnets with Weak Disorder
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We investigate the consequences for geometrically frustrated antiferromagnets of weak disorder in the
strength of exchange interactions. Taking as a model the classical Heisenberg antiferromagnet with
nearest neighbor exchange on the pyrochlore lattice, we examine low-temperature behavior. We show that
spatial modulation of exchange generates long-range effective interactions within the extensively
degenerate ground states of the clean system. Using Monte Carlo simulations, we find a spin glass
transition at a temperature set by the disorder strength. Disorder of this type, which is generated by
random strains in the presence of magnetoelastic coupling, may account for the spin freezing observed in

many geometrically frustrated magnets.
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Geometrically frustrated magnets—materials in which
magnetic ions form a lattice consisting of frustrated units
such as triangles and tetrahedra—characteristically remain
in the paramagnetic phase even at temperatures that are
small on the scale set by exchange interactions. Never-
theless, at sufficiently low temperature most examples
exhibit spin freezing [1]. Indications of freezing include a
difference between field-cooled and zero-field-cooled sus-
ceptibilities [2—7], a suppression of inelastic magnetic
neutron scattering [4,5,8,9], and in some cases a diver-
gence in the nonlinear susceptibility on approaching T,
as in conventional spin glasses [10]. Some well-studied
systems are SrCrg_,Gas4,0;9 (with a layered structure
consisting of slabs from the pyrochlore lattice) [2—-4,8],
the kagomé antiferromagnet hydronium jarosite [5,6], and
the pyrochlore Y,Mo,0; [7,9].

The origin of this spin freezing has long been puzzling.
On the theoretical side, it is established that freezing is
absent from some simple models without disorder, includ-
ing the classical Heisenberg antiferromagnet with nearest
neighbor interactions on the pyrochlore lattice [11]. While
a more realistic treatment should take account of disorder
and various residual interactions, in some of these materi-
als there appears to be little structural disorder [5], and in
others [3] T is rather insensitive to the identified form of
disorder, dilution at magnetic sites.

In this context, recent experiments which show the
importance of random strains in two pyrochlore materials
are particularly interesting, since via magnetoelastic cou-
pling such strains will lead to local variations in the
strength of exchange interactions. One material is
Y,Mo0,07, in which disorder in Mo-Mo distances has
been revealed using x-ray absorption fine structure [12].
The other is Zn;_,Cd,Cr,0O,4. Unusually for a geometri-
cally frustrated magnet, in pure form (x = 0) this has a
first-order transition to a low-temperature phase in which
magnetic degeneracy is lifted by a lattice distortion and
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there is Néel order [13]. This phase has a striking sensi-
tivity to substitution of Cd for Zn: x = 0.03 is sufficient to
suppress Néel order completely, with spin freezing taking
its place [14]. The effect is argued [14] to arise from strains
around sites, generated because Cd>* has a larger ionic
radius than Zn2?". In remarkable contrast, Néel order is
much less sensitive to magnetic dilution by substitution of
Gd for Cr: it survives with up to 25% of magnetic ions
removed [14].

Taking the background outlined above as motivation,
our aim in this Letter is to discuss the effects of weak
exchange randomness in geometrically frustrated antifer-
romagnets. We focus on the classical Heisenberg model
with nearest neighbor interactions on the pyrochlore lat-
tice, because of the large body of experimental work on
pyrochlore antiferromagnets, and because its behavior
without disorder is well understood [11]. In particular,
the disorder-free model is known to have an extensively
degenerate, connected ground-state manifold [11], and a
dipolar form for spin correlations in the limit of low
temperature 7T [15,16]. In the presence of exchange disor-
der one expects two regimes according to its amplitude.
Characterizing interactions by their average J and a mag-
nitude A of fluctuations, for strong disorder (A = J) the
model is simply a conventional example of a spin glass.
Our interest lies instead with the weak disorder limit (A <
J) in which exchange randomness acts as a perturbation
lifting the ground-state degeneracy of the clean system. In
the following we show that projection of fluctuations in
nearest-neighbor exchange interactions into the ground-
state manifold of the clean system generates long-range
effective interactions. In addition, using Monte Carlo simu-
lations with parallel tempering, we show for A <« J that
the model has a transition at a temperature T < A. As the
transition is approached from above, the spin glass suscep-
tibility diverges, and for T << T there is long-range spin
glass order.
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We start from the Hamiltonian

}[ = ZJ,]S, : S]’ (1)
i

in which classical spins S; are three-component unit vec-
tors at the sites i of a pyrochlore lattice, and exchange
interactions J;; are nonzero only between neighboring
pairs of sites. We begin with a qualitative discussion of
the special features of this model at weak disorder.

As a first step, consider a single tetrahedron taken from
this lattice, with spins S, ..., S, at the vertices. Its ground
states are the configurations for which ) ;S; = 0. With all
J;; equal, spin stiffness is zero in this toy problem in the
sense that, within the set of ground states, the orientations
of a pair of spins can be chosen arbitrarily. The consequen-
ces of small variations in J;; with amplitude A have been
set out in Ref. [17]: generically, a unique ground state is
selected (up to global spin rotations) in which all four spins
are collinear and the spin pairs linked by the strongest
interactions are arranged antiparallel. Variations in J;;
hence induce a ground-state stiffness, since changes in
the relative orientation of a pair of spins cost an energy
O(A).

Moving to the full, pyrochlore lattice problem, we next
argue that small variations in exchange interactions gen-
erate long-range effective couplings. The logic is as fol-
lows. Without disorder J;; can be block diagonalized by
Fourier transform. Its spectrum has four branches in the
Brillouin zone. The lowest two branches are degenerate
and independent of wave vector, mirroring the ground-state
degeneracy of the model. In the limit A < J it is natural to
project the matrix J;; onto this degenerate subspace. The
matrix elements P;; of the projection operator have a
dipolar form [18]: they decrease as |r; — rjl_3 for large
Ir, — r jl. Hence so does the projected interaction matrix. It
is partly the long range of these effective interactions that
distinguishes the system at A << J from conventional spin
glasses. Although dipolar interactions in a conventional
spin glass have been shown not to be sufficiently long
ranged to generate different critical behavior from that
with short-range interactions [19], it is not clear at present
whether this conclusion carries over to the problem we are
concerned with.

The interaction matrix and, in the limit A < J, its
projected version, enter directly into a calculation in which
the fixed spin length |S;|> = 1 is treated within the spheri-
cal approximation 3;|S;|> = N, (where the sum is over N
spins in the lattice). In the absence of disorder such an
approach is exact for a model in which the number of spin
components n — oo [20], and gives an excellent treatment
of low T correlations at all n [15]. Applying it and the
replica method, with a Gaussian distribution for J;; of
variance A2, we find [21] for A < J that there is a spin
glass transition at a temperature independent of J and
proportional to A:

A difficulty in proceeding further with a conventional
replica treatment lies in restricting spin configurations to
the manifold of ground states for the model without dis-
order, as is necessary for A, T < J. A natural and elegant
way of building in that constraint is to parametrize the
ground states in terms of a gauge field, as set out in
Refs. [15,16]. We next examine how the effects of weak
exchange disorder can be introduced into that formulation.
The essence of the gauge field parametrization for the
model without disorder can be summarized as follows. A
set of vector fields B4(r) is introduced to represent spin
configurations, with one field for each spin component.
The mapping between a spin configuration and vector
fields (see [15,16] for details) is made in such a way that
the condition for a configuration to be a ground state
translates into the condition V - B(r) = 0. After coarse
graining, the fluxes B“(r) are treated as continuous,
divergence-free fields, with a statistical weight e~ (be-
fore normalization) given by

s0=5 [aryiBemr )

where the stiffness « is determined by microscopic details
of the model. From the example of a single tetrahedron
(and the details of the mapping between spins and vector
fields), we know that the effect of small variations in J;; is
to favor a specific axis for flux. This axis turns out to be one
of the cubic crystal axes: the particular one selected de-
pends on the values of J;; and varies randomly from one
tetrahedron to another. We therefore propose an effective
theory for a geometrically frustrated antiferromagnet with
weak exhange disorder, taking Sq;r = S + Sgis + Sine With

S = ~BA [drY B0 nwE @)

Siwe = B f d3r[§|B“(r)|2T. 5)

Here, the preferred local axis for flux is defined by the
random field n(r), which has average [n,(r)],, = 0 and
variance [n,(r)n;(r')],, = 6;;6(r — r’). Inverse tempera-
ture is denoted by B: Sy dominates over S, at low tem-
perature, since the first is an energetic contribution while
the second is entropic. Microscopics imply an upper bound
to |B“(r)|, imposed here by S;, with phenomenological
coefficient u. Note that S.g, like FH, is invariant under
global spin rotations, which translate to rotations between
the different B4(r). In the langauge of this effective theory,
spin freezing is condensation of flux into a specific ar-
rangement favored by disorder.

To search for such freezing, we turn to Monte Carlo
simulations. While we believe that the formulation of
Egs. (3)—(5) most clearly embodies the special features
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FIG. 1. Evolution of C(r) with Monte Carlo time for T/J =

0.01, A/J=0.1, L =7, and maximum r; open and filled
symbols are from runs with different initial states, as described
in the main text. Inset: Same data on logarithmic time scale.

of the system at A < J, we choose instead to simulate the
Hamiltonian of Eq. (1) because it is closer to being a
realistic microscopic model. Our work builds on the initial
investigation of Ref. [22], but is much more detailed. In
common with a recent study of the spin glass transition in
the three-dimensional Edwards-Anderson Heisenberg
model [23], we use parallel tempering [24] to reach equi-
librium at low temperature. Some details are as follows.
We take J;; independently and uniformly distributed on the
interval [J A,J + A]with0.05 = A/J = 0.2, and study
the temperature range 1072 < T/J < 1. System sizes,
specified by the linear dimension L in units of the lattice
constant and by the number of spins N, = 4L3, are 2 <
L =7 and 32 = N; = 1372. Run lengths vary from 5 X
10° Monte Carlo steps per spin (MCS) for L = 2 to 2 X
10° for L = 7. Results are averaged over a number of
disorder realizations varying from 10° for L = 2 to 200
for L =17.

We present data for three quantities: the heat capacity
per spin C,, the spin glass correlation function C(r), and
the spin glass susceptibility y. The last two are defined in
terms of the behavior of two copies of a system with
identical disorder. Labeling the copies with [ = 1, 2 denot-
ing thermal averages in each copy by (- - -); and a disorder
average by [- - -],,, we have

C(r) =[(S(0) - $(r))1(S(0) - S(r))s oy (6)

and y = > .C(r).

First, as a test for equilibration, we examine C(r) as a
function of simulation time, comparing initial conditions
for which C(r) = 1 (both copies initially in the same Néel
ground state of the diorder-free model) with ones for which
C(r) = 0 (each copy initially an independent random spin
configuration). Results are shown in Fig. 1 for the most
demanding case (maximum L and r, minimum 7'). On this
basis, for L = 7 we collect data after discarding an initial
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FIG. 2. C, (in units of k) vs T/J for A/J = 0.1 and (from top
to bottom) L = 6, 5, 4, and 3.

1 X 10° MCS. Equilibration is much more rapid at smaller
L or larger T.

The heat capacity, shown in Fig. 2, varies smoothly with
T, as expected in the absence of a Néel ordering transition.
The consequences of exchange randomness are revealed in
the limiting value of C, at small 7: without disorder this is
[11] 3k /4 for large L, reflecting the zero modes (1/4 of all
degrees of freedom) of the ground states, but with disorder
it rises to kp, because all zero modes are removed, except
for the three arising from global spin rotations.

Next, we present the central result of our simulations,
the behavior of the spin glass correlation function C(r),
shown in Fig. 3. We believe this provides clear evidence
that C(r) is nonzero at large r below a transition tempera-
ture 7. From simple inspection of this figure 0.04 < T <
0.02 at A/J =0.1. In an effort to determine Ty more
precisely, and to illustrate finite-size effects, we turn to
the susceptibility y, shown in Fig. 4. The rapid increase in
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FIG.3. C(r) vs r for L="7 and A/J = 0.1 at (from top to

bottom) 7/J = 0.01, 0.02, 0.04, and 0.1. Inset: Dependence on
system size at T/J = 0.01, L =5, 6, 7.
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FIG. 4. x vs T/J for A = 0.1 J and system sizes from L = 2
to L = 7. Inset: Scaling collapse.

x with L at low T is clear. Close to T one expects the
finite-size scaling behavior

X(T,L) = LY f(L'"1), 7

where t = (T — T,)/T,, and v and 7y are the standard
critical exponents for the correlation length and suscepti-
bility. Scaling collapse of the data is shown in the inset of
Fig. 4, with T = 0.023, v = 1, and y = 1.45. Uncertain-
ties in these parameters are hard to quantify because finite-
size effects are large for L =2 and L = 3 (N; = 32 and
N, = 108); omitting these sizes, for A/J = 0.1 collapse is
obtained with 0.020 =T, =0.32, 09 = v = 1.2, and
1=vy=1.6.

Finally, we examine the dependence of T on A. On
dimensional grounds, one has Tx/A = g(A/J), and from
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FIG. 5. Dependence on disorder strength A: C(r) for r = 4 as a
function of T/Ty(A). Inset: To(A)/J vs A/J; line is a guide to
the eye.

our discussion of spin stiffness in a single tetrahedron we
expect g(x) to be finite in the weak disorder limit x — 0.
We have evaluated C(r) as a function of 7 for A/J = 0.2,
0.1, 0.75, and 0.05, considering only L =5 (N, = 500)
because of limitations on computational resources. As
shown in Fig. 5, the dependence of data for C(r) at fixed
ron T and A can be reduced to a single scaled variable
T/Ty(A), and Ty(A) o A for small A.

In summary, we have shown that weak exchange ran-
domness in the classical Heisenberg antiferromagnet on
the pyrochlore lattice generates long-range effective inter-
actions, and that these are responsible for a spin glass
transition at a temperature set by the disorder strength.
We suggest that this may account for spin freezing ob-
served in many geometrically frustrated magnets.
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