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We study theoretically the current-voltage characteristics of intrinsic Josephson junctions in high-Tc
superconductors. An oscillation of the breakpoint current on the outermost branch as a function of
coupling � and dissipation � parameters is found. We explain this oscillation as a result of the creation of
longitudinal plasma waves at the breakpoint with different wave numbers. We demonstrate the commen-
surability effect and predict a group behavior of the current-voltage characteristics for the stacks with a
different number of junctions. A method to determine the wave number of longitudinal plasma waves
from � and � dependence of the breakpoint current is suggested. We model the � and � dependence of
the breakpoint current and obtain good agreement with the results of the simulation.
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Creating new materials with given properties is an actual
problem of physics, chemistry, and material science. This
is related to the system of Josephson junctions, too, which
is a perspective object for superconducting electronics and
is being investigated intensively now. A simulation of the
current-voltage characteristics (CVC) of stacks of intrinsic
Josephson junctions (IJJ) [1] at different values of the
model parameters, such as the coupling and dissipation
parameters, is a way to predict the properties of the IJJ.
McCumber and Steward have investigated the return cur-
rent as a function of the dissipation parameter in a single
Josephson junction a long time ago [2]. In the case of the
system of junctions, the situation is cardinally different.
The CVC of IJJ is characterized by a multiple branch
structure, and branches have a breakpoint region with its
breakpoint current (BPC) and transition current to another
branch [3,4]. The BPC is determined by the creation of the
longitudinal plasma waves (LPW) with a definite wave
number k, which depends on the parameters � and �, the
number of junctions in the stack, and boundary conditions.
If we neglect the coupling between junctions, the branch
structure disappears, and the BPC coincides with the return
current. As we know, an investigation of the McCumber-
Steward dependence for the different branches of CVC for
IJJ has not been done yet. Machida and Koyama [5] have
stressed that capacitive coupling takes various values in
high-Tc superconductors (HTSC) and layered organic
superconductors, and they presented a systematic study
for the capacitively coupled Josephson junctions (CCJJ)
model, focusing on the dependence of phase dynamics on
the strength of the capacitive coupling constant from weak
to strong coupling regimes. But they did not investigate the
breakpoint region in the simulated CVC.

In this Letter, we generalized the McCumber-Steward
dependence of the return current for the case of IJJ in the
HTSC. We investigate the BPC IBP on the outermost
branch as a function of the coupling � and dissipation �
parameters for the stacks with a different number of IJJ and

demonstrate a plateau with a BPC oscillation. Based on the
idea of the parametric resonance in the stack of IJJ, a
modeling of the �� dependence of the BPC has been
done, and good qualitative agreement with the results of
the simulation has been obtained. We show that the ��
dependence of the BPC is an instrument to determine the
mode of LPW created at the breakpoint in the stacks with a
different number of junctions.

A system of dynamical equations in the capacitively
coupled Josephson junctions model with diffusion current
(CCJJ� DC model) [6,7]
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ing layers (S layers) for the stacks with a different number
of intrinsic junctions has been numerically solved. Here �l
is the phase of the order parameter in S layer l; Az is the
vector potential in the barrier.

The CCJJ� DC model is different from the CCJJ model
[8–10] by the last term on the right-hand side. This coupled
Ohmic dissipation term might be derived by the micro-
scopic theory [6] or phenomenologically by the inclusion
of the diffusion current between S layers and leads to the
equidistant branch structure in the CVC [7]. The details
concerning the system (1) are presented in Ref. [7]. Here
we use the periodic boundary conditions considering the
first S layers as a neighbor of the last one.

The simulated CVC have the breakpoint on their outer-
most branches. We have calculated the � dependence of
the BPC IBP at a fixed value of �, changing � in the
interval �0; 1� by step 0.005. The result of the calculation
at � � 0, 1, and 5 is presented in Fig. 1(a). At � � 0, the
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CVC does not manifest the multibranch structure, and the
breakpoint coincides with the return current. The curves at
� � 0 have new features in comparison with the case
without coupling. Particularly, they show a stronger in-
crease of the IBP at small �, a plateau at IBP ’ 0:83 and
the oscillation of the IBP on this plateau, and a transition to
the nonhysteretic regime (second plateau) at smaller �.
These features are discussed below. We change the cou-
pling parameter � in the interval �0; 8� by step 0.1 and
repeat the calculations of the � dependence of IBP. By this
method, we build the three-dimensional picture of the ��
dependence of the IBP for a stack with 10 IJJ, which is
shown in Fig. 1(b). We see two plateaus on this dependence
and the oscillations of the IBP on the first one as a function
of � and �. We note the next features for the � depen-
dence: (i) At � equal to zero, our results for � dependence
of the IBP coincide with the previous simulation of the �
dependence of the return current [2]; (ii) at small �, the �
dependence is getting sharper with the increase in �;
(iii) the oscillations of the IBP are getting stronger at larger
�; (iv) with the increase in �, the transition to the non-
hysteretic regime (to the second plateau) is approached at
smaller �. For the � dependence of the IBP, we may note:
(i) At small �, the � dependence is monotonic, and IBP is
increasing with �; (ii) at some �, the oscillations of IBP

appear; (iii) with the increase in �, the transition to the
nonhysteretic regime is observed at smaller �. The value of
the IBP changes strongly at small � and �. On the first
plateau, the variation of the IBP consists of ’ 3%–4% of the
value of Ic for N � 10. As we can see below, it depends on
the number of junctions in the stack and decreases with N.

Let us analyze in more detail the �- and � dependence
of the IBP. Figure 1(a) demonstrates the general features of
� dependence of the IBP at different values of the coupling
parameter. To clearly show these features, we demonstrate
in Fig. 2(a) in an increased scale the � dependence of the
IBP at � � 3. We can see clearly four maximums of IBP on
this curve. Using the Maxwell equation div�E=d� � 4��,
we express the charge �i on the superconducting layer i by
the voltages Vi;i�1 and Vi;i�1 in the neighbor insulating
layers �i � ��0=4�d0d��Vi;i�1 � Vi�1;i�. Solution of the

system of Eqs. (1) gives us the voltages Vi;i�1 in all
junctions in the stack, and it allows us to investigate the
time dependence of the charge on each S layer. We analyze
the time dependence of the charge oscillations on S layers
at� equal to 0.24, 0.27, 0.3, and 0.4 (around each maxima).
The charge distributions among the S layers in the stack at
a fixed time moment at the breakpoint of the outermost
branch are presented in Fig. 2(c). The charge oscillations
on S layers correspond to standing LPW with k equal to �,
4�=5, 3�=5, and 2�=5, relating to the four different
intervals of the � with four maximums in this region.
Figure 2(b) shows the � dependence of IBP at � � 0:3,
and it demonstrates four regions corresponding to the
different modes of LPW.

To prove our results and test the idea that at the break-
point a parametric resonance is approached and the plasma
mode is excited by Josephson oscillations, we have
modeled the �� dependence of the IBP in the CCJJ�
DC model. The equation for the Fourier component
of the difference of phase differences �’l � ’l�1;l �

’l;l�1 between neighbor junctions is [3] ��k � ��k� _�k �
cos���k����k � 0, where � � !p�k�t, !p�k� � !pC,

��k� � �C, ��k� � �=C, and C�
���������������������������������������
1� 2��1� cos�k��

p
.

This equation shows a resonance with changing its parame-
ters ��k� and ��k�. In Fig. 3(a), we have plotted the para-
metric resonance region for this equation on the diagram
��k� ���k�. Using this diagram, we determine the curve
which corresponds to the edge of the resonance region.
This curve is shown in Fig. 3(a) by dots. We consider that
the point on this curve corresponding to max��k� at a fixed
value of ��k� gives us the value of the �BP�k� which
corresponds to the breakpoint voltage. Taking into account
the relations for the outermost branch �BP�k� �
VBP=�N

�������������������������������������
1� 2��1� cosk�

p
� and VBP=N � IBP=�, we get
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FIG. 2 (color online). (a) The � dependence of the IBP for a
stack with 10 IJJ at � � 3. (b) The � dependence of the IBP at
� � 0:3. (c) The charge distribution among the layers corre-
sponding to the different plasma modes in the stack of 10 IJJ at
� � 3 and � � 0:24, 0.27, 0.3, and 0.4.
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FIG. 1 (color online). (a) The � dependence of the BPC IBP of
the outermost branch in the CVC at different values of coupling
parameter �. (b) The �� dependence of the IBP for a stack of
10 IJJ.

PRL 98, 157001 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 APRIL 2007

157001-2



 IBP��;�; k� � �
�������������������������������������
1� 2��1� cosk�

p
�BP�k;��: (2)

As an example, using the expression (2) for IBP, we have
plotted in Fig. 3(b) the three-dimensional �� dependence
of the IBP for two plasma modes with k � � and k � 2�=5
for a stack with 10 IJJ. Comparing Fig. 3(b) with Fig. 1(b),
we note that the main features of the simulated and the
modeled �� dependence of the IBP are in agreement.
Using the formulas (2), we have calculated the � depen-
dence of the IBP at � � 0:3 for plasma modes with differ-
ent wave numbers k. The corresponding curves are
presented in Fig. 3(c). We see that these results of modeling
coincide as well qualitatively with the results of the simu-
lation presented Fig. 1(b). Both kinds of curves show the
same behavior. We can see the increase in the distance
between the maximums of IBP and their sloping with the
increase in k in simulated and modeled curves. Figure 3(d)
shows the modeled � dependence of IBP at � � 3, which is
obtained from the resonance region data. This dependence
is in agreement with the results of simulation as well, and it
demonstrates the oscillations of the IBP, but it does not
reflect the decrease in the values of IBP maximums which is
shown in Fig. 2(a). This is a result of the approximations
we have used to obtain the linearized equation for the
Fourier component of the difference of phase differences
for neighbor junctions [3]. The theoretical considerations
which we use to model the �� dependence of the IBP lead
to the conclusion that there are regions on the �� depen-
dence of IBP which correspond to the creation of the LPW
with a different wave number k and explain the origin of

the IBP oscillations. The ideas and results presented above
have strong support from the results of the investigation of
the � and � dependence of the IBP in the case of a different
number of IJJ in the stack. The minimal wavelength 	
which might be realized in the discrete lattice at periodic
boundary conditions is two lattice units. So, in the stack
with N junctions, the LPW with k � 2�n=N may exist,
where n is an integer from 1 to N=2 for even N and from 1
to �N � 1�=2 for odd N. Because of the term (1� cosk) in
(2), the LPW with k corresponding to the highest IBP in the
decreasing current process is created. In Ref. [4], we
showed that, at small values of � and � at periodic bound-
ary conditions for stacks with even N, the � mode of LPW
is created, but for stacks with odd N the LPW with k �
�N � 1��=N is observed. Here we consider a case of
strong coupling between junctions, and the results are
different from the previous consideration.

Figure 4 shows the result of simulation of the outermost
branch in the CVC near the breakpoint for a stack with� �
3, � � 0:3, and N from N � 3 to N � 15. We can see that
the value of IBP depends on the number N of IJJ in the
stack, excluding the stack with N � 3n, where n is an
integer number. Time dependence analysis of the charge
oscillations on the S layers shows that, at the breakpoint in
the stacks with N � 3n, the LPW with k � 2�=3 is cre-
ated. In the stack with N � 4, we observe the LPW with
	 � 4. We will not touch the question concerning the
breakpoint region in the CVC presented in Fig. 4. It will
be considered in detail somewhere else. We note another
interesting group behavior of the CVC, presented in Fig. 4.
There is a monotonic increase of the IBP with N for stacks
with N � 3n� 1, n � 1. The same monotonic behavior
was observed for stacks with N � 3n� 2. Below, we
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FIG. 3 (color online). (a) Parametric resonance region in the
��k� � ��k� diagram. The value ��k� � �BP�k� corresponds to
the breakpoint voltage on the outermost branch. (b) Result of
modeling of the �� dependence of the IBP for plasma modes
with k � � and k � 2�=5 for a stack of 10 IJJ. (c) The modeled
� dependence of IBP for a stack with 10 IJJ at � � 0:3 corre-
sponding to the creation of the LPW with different k. (d) The
modeled � dependence of IBP at � � 3.
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explain these results using the idea of LPW creation at the
breakpoint.

Comparison of the � or � dependence of the IBP for
stacks with a different number of IJJ give us a simple
method to determine the wave numbers k of the LPW.
Figure 5(a) shows the � dependence of the IBP at � � 3
for the stacks with 3, 6, 9, and 12 IJJ. It demonstrates that,
in some intervals of �, the stacks with different N have the
equal value of the IBP. Particularly, all stacks have the
equal values of the IBP in some interval around � � 0:3.
According to the results of modeling, for the stack with
given N, the intervals on the curves of the � and �
dependence, corresponding to the different modes of the
LPW, follow in decreasing order in k. Because this interval
around � � 0:3 corresponds to the region around the
maximum on the � dependence of the IBP for the stack
with N � 3, the second maximum for the stacks with N �
6 and N � 9, and the third maximum for the stack with
N � 12, we may conclude that in this interval the LPW
with k � 2�=3 is created. For stacks with N � 6, this
interval is continued until � � 0:365. Using this method
of wave number determination, which we call the k� ��
method, we can determine all modes of LPW which might
be created in stacks with different parameters � and � and
a different number of IJJ. Particularly, we find that, on the
� dependence, the interval �0; 0:27� and the region �>
0:41 correspond to the creation of the � and �=3 modes of
LPW, respectively. From the � dependence of the IBP

which is presented in Fig. 5(b) for stacks with 5, 10, and
15 IJJ, we find that the interval around the maximum with
2.35 and the region �> 4:82 correspond to the creation of
the 4�=5 and �=5 modes of LPW, respectively.

Using the k� �� method, we find the values of k for
CVC presented in Fig. 4. In the stacks with N � 3n
(dashed-dotted curves in Fig. 4), the LPW with the same
wave number k � 2�=3 are created. For the stacks with
N � 3n� 1 (solid curves), we obtain k � 2�N � 1��=3N.
This value limits to 2�=3 with an increase in N from the
side of smaller values of k. In the stacks with N � 3n� 2
(dashed curves), we get k � 2�N � 1��=3N, which limits
to 2�=3 from the side of bigger values of k. So the idea of
LPW creation at the breakpoint explains the group behav-
ior of CVC in Fig. 4. The value of IBP depends on k but
does not depend on N at chosen parameters � and �; i.e.,
the creation of the same mode in stacks with different N
leads to the same value of IBP. So we may predict a
different commensurability manifestation in the CVC of
stacks with a different number of IJJ. This is a general-
ization of the commensurability effect we have observed in
Ref. [4] at small � and �.

In summary, we showed that coupling between junctions
changes crucially the dependence of the return current on a
dissipation parameter. Particularly, it leads to the appear-
ance of the plateau on the � dependence of the BPC on the
outermost branch and the oscillation of the BPC as a
function of �. Using the idea that at the breakpoint the
parametric resonance is approached and a longitudinal
plasma wave is created, we modeled the � and � depen-
dence of the BPC and obtained good agreement with the
results of the numerical simulation. We demonstrated that
the study of the � and � dependence of the BPC for the
stacks with a different number of IJJ gives us the instru-
ment to determine the wave number of the LPW.
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FIG. 5 (color online). (a) The simulated � dependence of the
IBP for the stacks with 3, 6, 9, and 12 IJJ at � � 3. The region
corresponding to the creation of the LPW mode with wave
number k � 5�=6 is shown by arrows. (b) The simulated �
dependence of the IBP for the stacks with 5, 10, and 15 IJJ at
� � 0:3.
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