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We report the observation of intermittency in gravity-capillary wave turbulence on the surface of
mercury. We measure the temporal fluctuations of surface wave amplitude at a given location. We show
that the shape of the probability density function of the local slope increments of the surface waves
strongly changes across the time scales. The related structure functions and the flatness are found to be
power laws of the time scale on more than one decade. The exponents of these power laws increase
nonlinearly with the order of the structure function. All these observations show the intermittent nature of
the increments of the local slope in wave turbulence. We discuss the possible origin of this intermittency.
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One of the most striking feature of turbulence is the
occurrence of bursts of intense motion within more quies-
cent fluid flow. This generates an intermittent behavior
[1,2]. One of the quantitative characterizations of intermit-
tency is given by the probability density function (PDF) of
the velocity increments between two points separated by a
distance r. Starting from a roughly Gaussian PDF at inte-
gral scale, the PDFs undergo a continuous deformation
when r is decreased within the inertial range and develop
more and more stretched exponential tails [3]. Deviation
from the Gaussian shape can be quantified by the flatness
of the PDF. The origin of non-Gaussian statistics in three
dimensional hydrodynamic turbulence has been ascribed
to the formation of strong vortices since the early work of
Batchelor and Townsend [1]. However, the physical
mechanism of intermittency is still an open question that
motivates a lot of studies in three dimensional turbulence
[4]. Intermittency has also been observed in a lot of prob-
lems involving transport by a turbulent flow for which the
analytical description of the anomalous scaling laws can be
obtained [5].

It has been known since the work of Zakharov and
collaborators that weakly interacting nonlinear waves can
also display Kolmogorov-type spectra related to an energy
flux cascading from large to small scales [6,7]. These
spectra have been analytically computed using perturba-
tion techniques, but can also be obtained by dimensional
analysis using Kolmogorov-type arguments [8]. More re-
cently, it has been proposed that intermittency correc-
tions should also be taken into account in wave turbulence
[9] and may be connected to singularities or coherent
structures [8,10] such as wave breaking [11] or whitecaps
[8] in the case of surface waves. However, intermittency
in wave turbulence is often related to non-Gaussian statis-
tics of low wave number Fourier amplitudes [10]; thus,
it is not obviously related to small scale intermittency of
hydrodynamic turbulence. Surprisingly, there exist only
a small number of experimental studies on wave turbu-
lence [12–16] compared to hydrodynamic turbulence,
and to the best of our knowledge, no experimental

observation of intermittency has been reported in wave
turbulence.

In this Letter, we report the observation of an intermit-
tent behavior for gravity-capillary waves on the surface of
a layer of mercury. We show that we need to compute the
second-order differences of the surface wave amplitude in
order to display intermittency. We observe that the shape of
their probability density function changes strongly across
the time scales (from a Gaussian at large scales to a
stretched exponential shape at short scales). This short-
scale intermittency is confirmed by computing the struc-
ture functions for various time scales. The structure func-
tions of order p (from 1 to 6) and the flatness are found to
be power laws of the time scale on more than one decade.
The exponents of the power laws of the structure functions
are found to depend nonlinearly on p. All these observa-
tions show the intermittent nature of the local slope incre-
ments of the turbulent surface waves.

The experimental setup has already been described else-
where [17]. It consists of a square vessel, 20� 20 cm2,
filled with mercury up to a height of 18 mm. Mercury is
chosen because of its low kinematic viscosity (1 order of
magnitude smaller than that of water), thus reducing wave
dissipation. Note, however, that similar qualitative results
to the ones reported here are found when changing mercury
by water. Surface waves are generated by the horizontal
motion of one rectangular (13� 3:5 cm2) plunging
Plexiglas wave maker driven by an electromagnetic vibra-
tion exciter. The wave maker is driven with random noise
forcing, supplied by a function generator, and selected in a
frequency range 0–6 Hz by a low-pass filter. The rms value
of the velocity fluctuations of the wave maker is propor-
tional to the driving voltage Urms applied to the vibration
exciter. Surface waves are generated 3 cm inward from one
vessel wall. The local vertical displacement of the fluid is
measured, 7 cm away from the wave maker, by a capacitive
sensor. The sensor allows wave-height measurements from
10 �m up to 2 cm.

A typical recording of the surface wave amplitude ��t�
at a given location is displayed in the inset of Fig. 1 as a
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function of time. The surface strongly fluctuates with a
large distribution of amplitudes (see below). The mean
value of the amplitude is close to zero. In order to charac-
terize the statistical properties of such a signal (inset of
Fig. 1), ��t� is recorded by means of an acquisition card
with a 1 kHz sampling rate during 3000 s, leading to 3�
106 points recorded. The power spectrum and the proba-
bility density function are then computed.

At high enough forcing, the signature of a wave turbu-
lence regime is observed [17]: a scale invariant spectrum
with two power-law frequency dependences (see Fig. 1)
and an asymmetric PDF (see Fig. 2). The low frequency
spectrum part, �f�4:3, corresponds to the gravity regime,
and the high frequency one, �f�2:8, corresponds to the
capillary regime. For the present characteristics of the
forcing, both power-law exponents are in fair agreement
with weak turbulence theory predicting a power spectrum
of the wave amplitudes �f�4 for gravity waves [6], and
�f�17=6 for capillary waves [7]. However, the f�4 scaling
has also been ascribed to cusps [18]. In addition, as em-
phasized in [17], only the capillary regime is robust, the
exponent for the gravity regime being strongly dependent
of the forcing parameters. The crossover near 30 Hz cor-
responds to the transition between gravity and capillary
wave turbulence spectra. At still higher frequencies ( �
150 Hz), viscous dissipation dominates and ends the cas-
cade of energy injected from large scale forcing.

The statistical distribution of wave height � at a given
location is displayed in Fig. 2. At high enough forcing, the
PDF is no longer Gaussian, and becomes asymmetric. The
positive rare events such as high crest waves are more
probable than deep trough waves. This also can be directly
observed on the temporal signal ��t� in Fig. 1.

To test the intermittent properties of a stochastic sta-
tionary signal ��t�, one generally computes the increments

����� � ��t� �� � ��t�. The structure functions of the
signal sp��� � hj�����jpi 	 hj��t� �� � ��t�jpi are also
computed to seek a possible scaling behavior with the time
lag � [3], h
i denoting a temporal average. However, if a
signal has a steep power spectrum E�f� � f�n with n > 3
(e.g., in Fig. 1), the signal is then at least one time differ-
entiable, and the increments are thus poorly informative
(since they are dominated by the differentiable compo-
nent), and s2��� � h���t� �� � ��t��2i � �2 whatever n
[19,20]. To test intermittency properties of such a signal, a
more pertinent statistical estimator is related to the second-
order differences of the signal, ����� � ��t� �� �
2��t� � ��t� �� [21]. The structure functions are then
defined as Sp��� � hj�����jpi. Note that other more com-
plex estimators exist based on wavelet analysis [22] or on
inverse statistics [23].

The PDFs of the second-order differences of the surface
wave height �����, normalized to their respective standard
deviation ��, are plotted in Fig. 3 for different time lags
6  �  100 ms, the correlation time of ��t� being �c ’
63 ms. A shape deformation of the PDFs of �����=�� is
observed with the time lag �. The PDF is nearly Gaussian
at large �. When � is decreased from this integral scale, the
PDF’s shape changes continuously, and strongly differs
from a Gaussian (see the PDF’s tails in Fig. 3). This is a
direct signature of intermittency. The extreme fluctuating
events [large values of �����=��] are all the more likely
when the time scale � is short. Thus, the signal of the
surface-wave amplitude displays intermittent bursts during
which the slope varies in an abrupt way within a short time.
The second-order differences of the wave-amplitude signal
are indeed related to intermittency of the local slope incre-
ments of the surface waves.
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FIG. 1. Power spectrum of surface wave height, ��t�. Dashed
lines have slopes�4:3 and�2:8. Inset: Typical recording of ��t�
at a given location during 10 s. h�i ’ 0. Forcing amplitude
Urms 	 0:4 V. Forcing frequency band 0  f  6 Hz.
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FIG. 2. Probability density function of the normalized wave
height, ��t�=��. Standard deviation �� �

���������
h�2i

p
	 2:6 mm,

flatness h�4i=h�2i2 	 4, and skewness h�3i=h�2i3=2 	 0:65.
Gaussian fit with zero mean and unit standard deviation (dashed
line). Same forcing parameters as in Fig. 1.
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Figure 4 shows the structure functions Sp��� of the
second-order differences of the wave amplitude as a func-
tion of the time lag �. For 5  �  50 ms, all the structure
functions of order p (from 1 to 6) are found to be power
laws of �, Sp��� � ��p , where �p is an increasing function
of the order p. When � * �c, Sp��� is found to saturate
(e.g., towards 2h�2i, for p 	 2) as usual [3] (data not
shown). To quantify the intermittency of the signal (i.e.,

the PDF shape deformation across the temporal scales), the
dependence of the flatness, S4=S

2
2, as a function of � is

displayed in the inset of the Fig. 4. At large �, the flatness is
close to 3 (the value for a Gaussian) and increases up to 26
at the shortest �, corresponding to a much flatter PDF (see
Fig. 3). The flatness is a power law of the time scale:
S4=S

2
2 � �

c with c 	 �0:88� 0:03.
The evolution of the exponents �p of the structure

functions as a function of p is shown in Fig. 5 from the
slopes of the log-log curves in Fig. 4. �p is found to be a
nonlinear function of p such that �p 	 c1p�

c2

2 p
2 with

c1 	 1:65� 0:05 and c2 	 0:2� 0:02. The value of c1 is
related to the exponent of the low frequency spectrum,
�2c1 � 1 � �4:3� 0:1. As said above, this value of c1

can be related to the cusps observed on the fluid surface.
They correspond to discontinuities in the vertical velocity
v of the surface, thus leading to f�2 spectrum, i.e., h�v�t�
�� � v�t��2i / �. This leads to the dimensional estimate
hj��t� �� � 2��t� � ��t� ��jpi / �p�p=2 	 �3p=2, in
fair agreement with the measurements for p 	 1 and 2
(see Fig. 5). The nonlinearity of �p (c2 � 0) is another
direct signature of intermittency [3]. This intermittency is
observed for 20  1=�  200 Hz, that is, for the capil-
lary wave regime. The so-called intermittency coeffi-
cient c2 can also be deduced from the measurement of
the flatness as a function of � (inset of Fig. 4). Indeed,
inserting the expression of �p into F 	 S4=S2

2 with
Sp��� � �

�p leads to F� ��4c2 . Thus, our measurements
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FIG. 4 (color online). Structure functions Sp��� of the second-
order differences of the wave amplitude as functions of the time
lag �, for 1  p  6 (as labeled). Solid line: Power-law fits,
Sp��� � ��p , where the slopes �p depend on the order p (see
Fig. 5). Curves have been shifted for clarity. Inset: Flatness
S4=S

2
2 as a function of �. Solid line: Power-law fit with a slope

�0:88. Correlation time �c ’ 63 ms. Same forcing parameters
as in Fig. 1.
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FIG. 5. Exponents �p of the structure functions as a function of
p. �p computed from the (�) second-order differences (from the
slopes of Fig. 4), or from the (�) third-order differences, and
fitted by (dashed line) �p 	 c1p�

c2

2 p
2 with c1 	 1:65 and

c2 	 0:2. Solid line: Dimensional analysis �p 	 3p=2. (�) ~�p
computed from the first-order increments, and fitted by (dash-
dotted line) ~�p 	 0:85p. (�) Theoretical points (from the first-
order increments) [24] and dimensional estimate ~�p 	 11p=12
(solid line).
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FIG. 3 (color online). Probability density functions of second-
order differences of the wave height ���t� �� � 2��t� � ��t�
���=�� for different time lags 6  �  100 ms (from top to
bottom). Gaussian fit with zero mean and unit standard deviation
(dashed line). Correlation time �c ’ 63 ms. Each curve has been
shifted for clarity. Same forcing parameters as in Fig. 1.

PRL 98, 154501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 APRIL 2007

154501-3



give c2 	 �c=4 	 0:22� 0:008, which is in agreement
with the value of c2 deduced from the exponents of the
structure functions. Note that this intermittency coefficient
is robust when using a third-order increment processing
(see diamonds in Fig. 5).

Figure 5 shows also the exponents ~�p of the structure
functions computed from the first-order differences of the
signal, hj��t� �� � ��t�jpi � �~�p , (open circles in Fig. 5).
One can thus compare with theoretical predictions of weak
turbulence [24] (solid circles in Fig. 5). Dimensional analy-
sis for weak capillary wave turbulence gives ~�p 	 11p=12
(solid line). Although the experimentally measured slope is
slightly smaller than 11=12 ’ 0:92, it is too close to 1 in
order to display intermittency just by computing the struc-
ture functions from the signal increments. Indeed, as said
above, since our signal spectrum is very steep, the signal
increments are poorly informative, and the exponents ~�p of
the structure functions of the signal increments are ex-
pected to be such that ~�p � p [19,20]. This shows that
second-order differences should be computed in order to
test intermittency properties.

We have reported that short-scale intermittency occurs
on the second-order differences of surface wave amplitude.
As previously proposed, intermittency could be related to
coherent structures on the fluid surface [10], such as wave
breaking [11] or whitecaps [8]. Here, wave breaking or
whitecaps do not occur, but cusps are observed on the fluid
surface. However, we do not presently have a theory that
determines �p for large p. We think that the observation of
small scale intermittency in our system that strongly differs
from high Reynolds number hydrodynamic turbulence is of
primary interest. It can indeed motivate explanations of
intermittency different than the ones considering the dy-
namics of the Navier-Stokes equation or the existence of
coherent structures. A more general explanation can be
related to the properties of the fluctuations of the energy
flux that are shared by different systems displaying an
energy cascade.
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