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We show that two-photon transport is strongly correlated in one-dimensional waveguide coupled to a
two-level system. The exact S matrix is constructed using a generalized Bethe-ansatz technique. We show
that the scattering eigenstates of this system include a two-photon bound state that passes through the two-
level system as a composite single particle. Also, the two-level system can induce effective attractive or
repulsive interactions in space for photons. This general procedure can be applied to the Anderson model
as well.
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Creating a strong photon-photon interaction at the few-
photon level is of great interest for quantum information
sciences. In atomic gases, such an interaction can be
accomplished either with systems exhibiting electromag-
netically induced transparency (EIT) [1,2], or by reaching
the strong-coupling regime of a two-level atom in a high-Q
cavity [3]. However, in an on-chip, solid-state environ-
ment, which is crucial for practical applications, there
have been significant challenges in implementing these
concepts. For example, it is difficult to create the long-
lifetime dark state, which is required for EIT effects, in
most practical solid-state environments [4]. While the
strong-coupling regime has been reached by placing a
quantum dot in a high-Q photonic crystal microcavity
[5,6], doing so requires very accurate tuning of both the
electronic and optical resonances to ensure simultaneous
spectral and spatial overlaps [7].

In this Letter we propose and analyze in detail an alter-
native scheme to create strong photon-photon interaction.
Our approach exploits a unique one-dimensional feature
for photon states in many nanophotonic structures. In a
photonic crystal with a complete photonic band gap, for
example, a line-defect waveguide forms a true one-
dimensional continuum for photons, since there are no
other states within the gap. Here we show that by coupling
a two-level system to such a continuum, strong photon-
photon interactions can be created (Fig. 1). (Below we
refer to the two-level system as the ‘‘atom.’’) In this
system, the strong interaction arises from the fact that, in
a one-dimensional system, the reemitted and scattered
waves from the atom inevitably interfere with the incident
waves. Moreover, since the atom, intuitively speaking, can
at most absorb only one photon at a time, the transport
properties of multiphotons are strongly correlated.

Compared with previous solid-state approaches, our
scheme does not require the presence of a long-lifetime
dark state. Neither does this scheme necessitate detailed
spectral tuning or spatial control of the two-level system,
since it operates in the weak-coupling regime, and thus the
one-dimensional continuum can be broadband. Moreover,

the Hamiltonian of the system actually describes an exact
photonic analogue of the Kondo effect, which is important
for processing electronic quantum bits [8]. Our approach
may therefore open a new avenue toward practical photon-
based quantum information processing on-chip.

The system in Fig. 1 is modeled by the Hamiltonian
[9,10]:
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where vg is the group velocity of the photons and cyR�x�
�cyL�x�� is a bosonic operator creating a right-going (left-
going) photon at x. �V is the coupling constant, ayg �a

y
e � is

the creation operator of the ground (excited) state of the
atom, �� � aye ag��� � aygae� is the atomic raising (low-
ering) ladder operator satisfying ��jn;�i � jn;�i and
��jn;�i � 0, where jn;�i describes the state of the
system with n photons and the atom in the excited (�) or
ground (�) state. Ee � Eg�	 �� is the transition energy.
This Hamiltonian describes the situation where the propa-
gating photons can run in both directions, and is referred to
as the ‘‘two-mode’’ model.

 

FIG. 1 (color). Schematics of the system. A two-level system
is coupled to a one-dimensional continuum in which the photons,
shown as wiggly waves, propagate in each direction.
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By employing the following transformation, cye �x�	
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the original Hamiltonian is transformed into two decoupled
‘‘one-mode’’ Hamiltonians, i.e., H � He �Ho, where
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Ho is an interaction-free one-mode Hamiltonian, while He
describes a nontrivial one-mode interacting model with
coupling strength V	

���
2
p

�V. He is identical in form to the
s-d model [11,12], which describes the S-wave scattering
of electrons off a magnetic impurity in three dimensions.
Here, however, instead of fermionic operators describing
electrons, we have bosonic operators describing photons.

The one-photon eigenstate for He takes the form jki 	R
dxfeikx����x� � tk��x��cy�x� � ek��gj0;�i [9,10],

where

 tk 	
k��� i�=2

k��� i�=2
; � 	 V2 (3)

is the transmission amplitude of magnitude 1, and ek �����
�
p

=�k��� i�=2� is the excitation amplitude. The
single photon experiences resonance when its energy k is
close to the transition energy � of the atom. For notational
simplicity, vg and @ are set to 1, and the subscript e in cye is
dropped hereafter.

In this Letter we focus on the transport properties of the
interacting Hamiltonian He with two incident photons. For
this Hamiltonian, as well as the Anderson model and the
interacting resonance level model in condensed matter
physics, attempts to diagonalize using the Bethe ansatz
have been published [12–14]. As we emphasize below,
however, a complete and correct description of the trans-
port properties requires a careful reexamination of these
solutions. In particular, the Bethe-ansatz solution con-
structed following the procedures in Ref. [14] is in fact
not complete for this purpose. Rather, to construct the
scattering matrix, one needs one additional two-photon
bound state. These can all be derived by the systematic
approach detailed below.

We first describe the general features of the scattering
problem. Before and after the scattering, the photons are
away from the atom, and thus the two-photon Hilbert
spaces of the ‘‘in’’ (before scattering) and ‘‘out’’ (after
scattering) states [15] are the same space of free photons
and consists of all symmetric functions of the coordinates
of the photons, x1 and x2. This Hilbert space is spanned by
a complete basis fjSk;pi:k 
 pg defined as
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where E � k� p is the total energy of the photon pair,
xc 	 1=2�x1 � x2�, x 	 x1 � x2, and � 	 �k� E=2� �
1=2�k� p� 
 0. Alternatively, the same Hilbert space
can instead be spanned by another basis fjAk;pi:k 
 pg
defined as
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where sgn�x� 	 ��x� � ���x� is the sign function. We em-
phasize that, while both fjSk;pi:k 
 pg and fjAk;pi:k 
 pg
are complete [16], arbitrary linear combination
fak;pjSk;pi � bk;pjAk;pi:k 
 pg may not be.

The transport properties of two photons, in the presence
of the atom, are described by the S matrix (S) that maps
between the Hilbert space of the in- and out-states: jouti �
Sjini. The matrix element of the S matrix, for example,
hSk;pjSjSk0;p0 i, is the transition amplitude of the process
[15].

The S matrix of the two-photon case, as will be derived
below, can be diagonalized as
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X
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X
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(7)

Now we prove Eqs. (6) and (7) by first showing that
jWk;pi and jBEi are eigenstates of the scattering matrix. A
two-photon eigenstate for He has the general form

 j�i 	
�Z

dx1dx2g�x1; x2�cy�x1�cy�x2�

�
Z
dxe�x�cy�x���

�
j0;�i; (8)

where e�x� is the probability amplitude of the atom in the
excited state. Because of the boson statistics, the wave
function satisfies g�x1; x2� � �g�x2; x1�. [g�x1; x2� is con-
tinuous on the line x1 � x2 for bosons.]

FromHej�i�Ej�i, we obtain the equations of motion:
 �
�i

@
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@
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� E

�
g�x1; x2�

�
V
2
�e�x1���x2� � e�x2���x1�� � 0;�

�i
@
@x
� E��

�
e�x� � V�g�0; x� � g�x; 0�� � 0;

(9)

where g�0; x� � g�x; 0� 	 1=2�g�0�; x� � g�0�; x��. The
functions g�x1; x2� and e�x� are piecewise continuous.

PRL 98, 153003 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 APRIL 2007

153003-2



The interactions occur on the coordinate axes x1 � 0,
and x2 � 0. Applying the equations of motion gives the
following boundary conditions on the boundary of
quadrants II (x1 < 0< x2) and III (x1; x2 < 0):
 

�i�g�x1;0
��� g�x1;0

����
V
2
e�x1� � 0;�

�i
@
@x1
� �E���

�
e�x1� �V�g�x1;0

��� g�x1;0
��� � 0;

(10)

and on the boundary of quadrants II (x1 < 0< x2) and I
(0< x1, x2):
 

�i�g�0�; x2� � g�0�; x2���
V
2
e�x2� � 0;�

�i
@
@x2
� �E���

�
e�x2� �V�g�0�; x2� � g�0�; x2�� � 0:

(11)

These boundary conditions must be supplemented by a
further condition

 e�0�� � e�0��; (12)

which ensures the self-consistency.
By boson symmetry we only need to consider the half-

space x1 
 x2. In this half-space, suppose g�x1; x2� �
B3eikx1�ipx2 � A3eipx1�ikx2 for x1 < x2 < 0, using
Eqs. (10)–(12), we obtain g�x1; x2� � tktp�B3eikx1�ipx2 �

A3eipx1�ikx2� for 0< x1 < x2, provided B3=A3 � �k� p�
i��=�k� p� i�� as required from the continuity condition
of e�x�. Therefore, in the full quadrant III, the in-state,
jWk;pi as defined by
 

hx1;x2jWk;pi� �A3eikx1�ipx2�B3eipx1�ikx2���x1�x2�

��B3eikx1�ipx2�A3eipx1�ikx2���x2�x1�

/ �k�p�hx1;x2jSk;pi� i�hx1;x2jAk;pi; (13)

is an eigenstate of the S matrix with eigenvalue tktp. This
construction and the form of the solution is in essence the
Bethe-ansatz method [12,14].

The set fjWk;pi:k < pg, however, does not form a
complete set of basis of the free two-photon Hilbert
space. Instead, there exists one additional eigenstate of
the S matrix, jBEi, defined by Eq. (7). To see that jBEi is
an eigenstate of the S matrix, suppose g�x1; x2� �

eiExce��jxj=2 in quadrant III, again using Eqs. (10)–(12),
we obtain g�x1; x2� � tEeiExce��jxj=2 in quadrant I. Such a
bound state is important when calculating the ground-state
energy in the Anderson model [17]. We show here that it is
also crucial to the scattering and transport properties.

The set of eigenstates fjWk;p; jBEig forms a complete and
orthonormal basis that spans the free two-photon Hilbert
space. The orthonormality check is straightforward:
hWk0;p0 jWk;pi � ��k � k0���p � p0� � ��� � �0���E �
E0�, hBEjBEi � ��E� E0�, and hWk;pjBEi � 0. The com-

pleteness can be proven by checking that

 W 	
X
k<p

jWk;pihWk;pj �
X
E

jBEihBEj (14)

is indeed an identity operator. This, together with the
eigenvalues tktp and tE, prove Eq. (6).

We note that the two-photon bound state described by
jBEi, of which the spatial extent is 1=�, behaves as an
effective single composite particle with an energy k� p,
and remains integral when passing through the atom. The
two-level system therefore provides the capability of ma-
nipulating composite particles of photons [18] without
destroying them. This capability is important in quantum
cryptography [19] and quantum lithography [20].

For an arbitrary in-state of jini � jSk1;p1
i, the momenta

distribution of the out-state hSk2;p2
jouti is

 hSk2;p2
jSjSk1;p1

i � tk1
tp1
���1 � �2���E1 � E2�

� tk1
tp1
���1 ��2���E1 � E2�

� B��E1 � E2�; (15)

where the first two terms are the direct and exchange terms
of each individual incident momentum, the third term with

 B�
16i�2

�

�
E1�2�� i�

�4�2
1��E1�2�� i��2��4�2

2��E1�2�� i��2�

(16)

represents the background fluorescence due to the scatter-
ing. When �1 � �2, jB�E1;�1;�2�j

2 is the probability
density for the outgoing photon pair in the (E1;�2) state,
when the incoming photon pair is in the (E1;�1) state.

The emergence of the background fluorescence is com-
pletely different from the well-known resonance fluores-
cence phenomenon where a strong laser beam is scattering
off an ensemble of two-level systems [21]. In the current
two-photon case, the background fluorescence results from
the fact that the momentum of each photon is not con-
served. Consequently, the interactions with the two-level
system redistribute the momenta of the photons over a
continuous range, under the total energy and momentum
conservation constraint. Furthermore, the locations of the
poles in B, at k1;2 � p1;2 � �� i�=2, correspond ap-
proximately to either one of the photons having an energy
at �. Thus, the background fluorescence arises as one
photon inelastically scatters off a composite transient ob-
ject formed by the atom absorbing the other photon.

Figure 2 plots normalized jB�E;�1;�2�j
2 for various

photon pair energy E. jB�E;�1;�2�j
2 is an even func-

tion of E� 2�. When jE� 2�j 
 �, there is a single
peak centered at �1 � �2 � 0. The height of the peak
reaches maximum at E � 2� [Fig. 2(a)], and gradually
decreases as jE� 2�j increases. When jE� 2�j � �,
the top of the peak becomes flat [Fig. 2(b)]. When
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jE� 2�j> �, there are four peaks centered at

��
����������������������������������
�E� 2��2 � �2

p
=2;�

����������������������������������
�E� 2��2 � �2

p
=2�, respec-

tively [Figs. 2(c) and 2(d)]. For any E and �1, the locations
of the peaks for jB�E;�1;�2�j

2 are independent of �1. In
contrast, the � functions in the S matrix [Eq. (15)] are
located on the �1 � �2 line.

The emergence of the background fluorescence also
manifests as an effective spatial interaction between the
photons. For an in-state jini � jSE1;�1

i, the out-state is

 hxc;xjouti�eiE1xc

���
2
p

2�

�
tk1
tp1

cos��1x�

�
4�2

4�2
1��E1�2�� i��2

ei�E1�2��jxj=2��jxj=2

�
;

(17)

which takes the form eiE1xchxj�i, where hxj�i is the wave
function in the relative coordinate x. The deviation of the
out-state wave functions from that of the interaction-free
case is large when �1 ’ ��E1=2���, i.e., when at least
one of the incident photons is close to resonance.
Figure 3(a) plots the normalized deviation of jhx �
0j�ij2 from the interaction-free case as a function of E1

and �1. A positive (negative) deviation implies that the two
photons bunch (antibunch) after scattering. The hyperbola
4�2

1 � �E1 � 2��2 � �2 indicates where the deviation is
zero, thereby separates the bunching and antibunching
regions. The deviation reaches maximum at E1 � 2� �
�1 � 0, when both incident photons are on resonance with
the atom. The wave function for this case is shown in
Fig. 3(b), which exhibits the exponentially decaying fea-
ture in x. The two photons form a bound state after scat-
tering, with half-width in space about 1=�. When E1 � 2�
is kept at zero, the height of the peak at x � 0 decreases

with increasing j�1j [Figs. 3(c) and 3(d)]. Figure 3(d)
shows the case for �1 � �

���
3
p

�=2, where the peak at x �
0 is completely depleted. Both bunching and antibunching
behavior occurs at other nonresonant E1 and �1 as well,
but is generally weaker. The resonance thus can induce
either an effective repulsion or attraction between two
photons.

S. F. acknowledges financial support by the David and
Lucile Packard Foundation.

*Electronic address: shanhui@stanford.edu
[1] S. E. Harris et al., Phys. Rev. Lett. 81, 3611 (1998).
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FIG. 2 (color). Background fluorescence as a function of ��1

and ��2 at various energy. (a) �E � 0, (b) �E � 2, (c) �E � 4,
(d) �E � 6. �B 	 ��=2�B, �E 	 �E� 2��=��=2�, and �� 	
�=��=2�. For any given E, the in- and out-states can be com-
pletely specified by one quadrant in the �1-�2 plane.
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FIG. 3 (color). (a) Plot of the normalized deviation of the
relative wave function: jh �x � 0j�ij2=�
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2
p
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��=2�x. The two gray lines indicate the zero value. (b)–
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. Gray lines indicate the interaction-free case.
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