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We here discuss the emergence of quasistationary states (QSS), a universal feature of systems with
long-range interactions. With reference to the Hamiltonian mean-field model, numerical simulations are
performed based on both the original N-body setting and the continuum Vlasov model which is supposed
to hold in the thermodynamic limit. A detailed comparison unambiguously demonstrates that the Vlasov-
wave system provides the correct framework to address the study of QSS. Further, analytical calculations
based on Lynden-Bell’s theory of violent relaxation are shown to result in accurate predictions. Finally, in
specific regions of parameters space, Vlasov numerical solutions are shown to be affected by small scale
fluctuations, a finding that points to the need for novel schemes able to account for particle correlations.
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The Vlasov equation constitutes a universal theoretical
framework and plays a role of paramount importance in
many branches of applied and fundamental physics.
Structure formation in the Universe is for instance a rich
and fascinating problem of classical physics: The fossil
radiation that permeates the cosmos is a relic of micro-
fluctuation in the matter created by the big bang, and such a
small perturbation is believed to have evolved via gravita-
tional instability to the pronounced agglomerations that we
see nowadays on the galaxy cluster scale. Within this
scenario, gravity is hence the engine of growth and the
Vlasov equation governs the dynamics of the non-baryonic
“dark matter’” [1]. Furthermore, the continuous Vlasov
description is the reference model for several space and
laboratory plasma applications, including many interesting
regimes, among which the interpretation of coherent elec-
trostatic structures observed in plasmas far from thermo-
dynamic equilibrium. The Vlasov equation is obtained as
the mean-field limit of the N-body Liouville equation,
assuming that each particle interacts with an average field
generated by all plasma particles (i.e., the mean electro-
magnetic field determined by the Poisson or Maxwell
equations where the charge and current densities are cal-
culated from the particle distribution function) while inter-
particle correlations are completely neglected.

Numerical simulations are presently one of the most
powerful resources to address the study of the Vlasov
equation. In the plasma context, the Lagrangian particle-
in-cell approach is by far the most popular, while Eulerian
Vlasov codes are particularly suited for analyzing specific
problems, due to the associated low noise level which is
secured even in the nonlinear regime [2]. However, any
numerical scheme designed to integrate the continuous
Vlasov system involves a discretization over a finite
mesh. This is indeed an unavoidable step which in turn
affects numerical accuracy. A numerical (diffusive and
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dispersive) characteristic length is in fact introduced, being
at best comparable with the grid mesh size: as soon as the
latter matches the typical length scale relative to the dy-
namically generated fluctuations, a violation of the con-
tinuous Hamiltonian character of the equations occurs (see
Refs. [3]). It is important to emphasize that even if such
non-Viasov effects are strongly localized in phase space,
the induced large scale topological changes will eventually
affect the system globally. Therefore, aiming at clarifying
the problem of the validity of Vlasov numerical models, it
is crucial to compare a continuous Vlasov, but numerically
discretized, approach to a homologous N-body model.
The Vlasov equation has been also invoked as a refer-
ence model in many interesting one-dimensional problems,
and recurrently applied to the study of wave-particle inter-
acting systems. The Hamiltonian mean-field (HMF) model
[4], describing the coupled motion of N rotators, is, in
particular, assimilated to a Vlasov dynamics in the mean-
field limit on the basis of rigorous results [5]. The HMF
model has been historically introduced as representing
gravitational and charged sheet models and is quite exten-
sively analyzed as a paradigmatic representative of the
broader class of systems with long-range interactions [6].
A peculiar feature of the HMF model, shared also by other
long-range interacting systems, is the presence of quasi-
stationary states (QSS). During time evolution, the system
gets trapped in such states, which are characterized by non-
Gaussian velocity distributions, before relaxing to the final
Boltzmann-Gibbs equilibrium [7]. An attempt has been
made [8] to interpret the emergence of QSSs by invoking
Tsallis statistics [9]. This approach has been later on
criticized in [10], where QSSs were shown to correspond
to stationary stable solutions of the Vlasov equation.
However, the analysis was limited to a particular choice
of the initial condition. More recently, an approximate
analytical theory, based on the Vlasov equation, which
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derives the QSSs of the HMF model using a maximum
entropy principle, was developed in [11]. This theory is
inspired by the pioneering work of Lynden-Bell [12] and
relies on previous work on 2D turbulence by Chavanis
[13]. However, the underlying Vlasov ansatz has not
been directly examined and it is recently being debated
[14].

In this Letter, we shall discuss numerical simulations of
the continuous Vlasov model, the kinetic counterpart of the
discrete HMF model. By comparing these results to both
direct N-body simulations and analytical predictions, we
shall reach the following conclusions: (i) the Vlasov for-
mulation is indeed ruling the dynamics of the QSS; (ii) the
proposed analytical treatment of the Vlasov equation is
surprisingly accurate, despite the approximations involved
in the derivation; (iii) Vlasov simulations must be handled
with extreme caution when exploring specific regions of
the parameters space.

The HMF model is characterized by the following
Hamiltonian

1 1<
— 2 _ _
H= 3 j:EI p;+ 5N ,;jE:l[l cos(6; —60)], (1)

where 6; represents the orientation of the jth rotor and p; is
its conjugate momentum. To monitor the evolution of the
system, it is customary to introduce the magnetization, a
macroscopic order parameter defined as M = |[M| =
| > m;|/N, where m; = (cosf,, sinf;) stands for the mi-
croscopic magnetization vector. As previously reported
[4], after an initial transient, the system gets trapped into
QSSs, i.e., nonequilibrium dynamical regimes whose life-
time diverges when increasing the number of particles N.
Importantly, when performing the mean-field limit (N —
o) before the infinite time limit, the system cannot relax
towards Boltzmann-Gibbs equilibrium and remains perma-
nently confined in the intermediate QSSs. As mentioned
above, this phenomenology is widely observed in systems
with long-range interactions, including galaxy dynamics
[15], free electron lasers [16], and 2D electron plasmas
[17].

In the N — oo limit the discrete HMF dynamics reduces
to the Vlasov equation

af/ot + paf/a0 — (dV/de)of/ap =0,  (2)

where f(6, p, t) is the microscopic one-particle distribution
function and

VO)LF] = 1 — M, f]cos(0) — M,[f]sin(0),  (3)

M[f] = ff ﬁ; £(6, p, ) cos0dodp, (4

M,[f] = ﬁ’ f: £(6, p, 1) sin0dOdp. (5)

The specific energy A[f]= [[(p*/2)f(6, p,t)dOdp —

(M?+M;—1)/2 and momentum P[f]= [[pf(6,
p,1)d@dp functionals are conserved quantities. Homoge-
neous states are characterized by M = 0, while nonhomo-
geneous states correspond to M # 0.

Rigorous mathematical results [5] demonstrate that, in-
deed, the Vlasov framework applies in the continuum
description of mean-field type models. This observation
corroborates the claim that any theoretical attempt to char-
acterize the QSSs should resort to the above Vlasov based
interpretative picture. Despite this, the QSS non-Gaussian
velocity distributions have been fitted [8] using Tsallis’ ¢
exponentials, and the Vlasov formalism assumed valid
only for the limiting case of homogeneous initial condi-
tions [14,18]. In a recent paper [11], the aforementioned
velocity distribution functions were instead reproduced
with an analytical expression derived from the Vlasov
scenario, with no adjustable parameters and for a large
class of initial conditions, including inhomogeneous ones.
The key idea dates back to the seminal work by Lynden-
Bell [12] (see also [19,20]) and consists in coarse-graining
the microscopic one-particle distribution function f(6, p, )
by introducing a local average in phase space. It is then
possible to associate an entropy to the coarse-grained
distribution f: The corresponding statistical equilibrium
is hence determined by maximizing such an entropy, while
imposing the conservation of the Vlasov dynamical invar-
iants, namely, energy, momentum and norm of the distri-
bution. We shall here limit our discussion to the case of an
initial single particle distribution which takes only two
distinct values: f, = 1/(4A4A ), if the angles (momenta)
lie within an interval centered around zero and of half-
width Ay (A,), and zero otherwise. This choice corre-
sponds to the so-called “water-bag” distribution which is
fully specified by energy h[f] = e, momentum P[f] = o
and the initial magnetization My = (Mo, M ). The maxi-
mum entropy calculation is then performed analytically
[11] and results in the following form of the QSS distribu-
tion

o~ B /2= M, [F]sind—M,[F]cost)— Ap—p
+ o~ BW?/2=M,[f]sing—M [flcosd)—Ap—p’
(6)

where B/ fo, A/ fo, and u/ f, are rescaled Lagrange multi-
pliers, respectively, associated with the energy, momen-
tum, and normalization. Inserting expression (6) into the
above constraints and recalling the definition of M [f],
M y[f], one obtains an implicit system which can be solved
numerically to determine the Lagrange multipliers and the
expected magnetization in the QSS. Note that the distribu-
tion (6) differs from the usual Boltzmann-Gibbs expression
because of the ‘“‘fermionic” denominator. Numerically
computed velocity distributions have been compared in
[11] to the above theoretical predictions (where no free
parameter is used), obtaining an overall good agreement.
However, the central part of the distributions is modulated
by the presence of two symmetric bumps, which are the
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signature of a collective dynamical phenomenon [11]. The
presence of these bumps is not explained by our theory.
Such discrepancies could be interpreted as an indirect
proof of the fact that the Vlasov model holds only approxi-
mately. We shall here demonstrate that the deviations
between theory and numerical observation are uniquely
due to the approximations built in the Lynden-Bell
approach.

A detailed analysis of the Lynden-Bell equilibrium (6) in
the parameter plane (M, ¢) enabled us to unravel a rich
phenomenology, including out of equilibrium phase tran-
sitions between homogeneous (Mg = 0) and inhomoge-
neous (Mgss # 0) QSS states. Second and first order
transition lines are found that separate homogeneous and
nonhomogeneous states and merge into a tricritical point
approximately located in (M, ¢) = (0.2, 0.61). When the
transition is second order two extrema of the Lynden-Bell
entropy are identified in the inhomogeneous phase: the
solution Mygs = 0 corresponds to a saddle point, being
therefore unstable; the global maximum is instead associ-
ated with Mggs # 0, which represents the equilibrium
predicted by the theory. This argument is important for
what will be discussed in the following.

Let us now turn to direct simulations, with the aim of
testing the above scenario, and let us first focus on the
kinetic model (2)—(5). The algorithm solves the Vlasov
equation in phase space and uses the so-called “splitting
scheme”, a widely adopted strategy in numerical fluid
dynamics. Such a scheme, pioneered by Cheng and
Knorr [21], was first applied to the study of the Vlasov-
Poisson equations in the electrostatic limit and then em-
ployed for a wide spectrum of problems [3]. For different
values of the pair (M, e), which sets the widths of the
initial water-bag profile, we have performed a direct inte-
gration of the Vlasov system (2)—(5). After a transient,
magnetization is shown to eventually attain a constant
value, which corresponds to the QSS value observed in
the HMF, discrete, framework. The asymptotic magnet-
izations are hence recorded when varying the initial con-
dition. Results (stars) are reported in Fig. 1(a) where Mgg
is plotted as a function of e. A comparison is drawn with
the predictions of our theory (solid line) and with the
outcome of N-body simulation (squares) based on the
Hamiltonian (1), finding an excellent agreement. This ob-
servation enables us to conclude that (i) the Vlasov equa-
tion governs the HMF dynamics for N — oo both in the
homogeneous and nonhomogeneous case; (ii) Lynden-
Bell’s violent relaxation theory allows for reliable predic-
tions, including the transition from magnetized to non-
magnetized states.

Deviations from the theory are locally detected when the
above transition is progressively approached. To shed light
onto this issue, we have performed N-body simulations for
Ny random replicas of the initial condition and repeated
the numerical experiments for different values of the pair
(e, My). Quite remarkably, the system attains different QSS
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FIG. 1 (color online). Panel (a): The magnetization in the QSS
is plotted as a function of energy, e, at M, = 0.24. The solid line
refers to the Lynden-Bell inspired theory. Stars (squares) stand
for Vlasov (N-body, N = 10°) simulations. Inset: as in the main
frame but for N = 10°. Each point results from averaging over
Ny = 20 independent realizations. The error bars are calculated
as twice the standard deviation. Panel (b): Entropy S at the
stationary points, as a function of energy, e: magnetized solution
(solid line), and nonmagnetized one (dashed line).

magnetizations. The probability distribution function of
Mgss shows a peaked bell-shaped profile. The average
value of the magnetization is measured and plotted in the
inset of Fig. 1(a) (blue squares), together with the associ-
ated error, estimated as twice the standard deviation. The
error bars shrink as the number of simulated particles is
increased (data not shown). Moreover, at fixed N, more
sensible errors are found in proximity of the transition, an
observation that can be explained as follows. The coarse-
grained entropy is substantially flat in the transition region,
which implies that an extended basin of states exists where
the system can possibly be trapped. As confirmed by the
inspection of Fig. 1(b), close to the transition point, the
entropy S of the Lynden-Bell coarse-grained distribution
takes almost the same value when evaluated on the global
maximum (solid line) or on the saddle point (dashed line).
A dedicated campaign of simulations based on the Vlasov
code running at different resolutions (grid points) has
confirmed this scenario, highlighting a similar degree of
variability of Mqgs. These findings point to the fact that in
specific regions of the parameter space, Vlasov numerics
needs to be carefully analyzed (see also Refs. [22]).
Importantly, it is becoming nowadays crucial to step to-
wards an “extended” Vlasov theoretical model which
enables us to account for discrete effects by incorporating
at least the two particle correlations interaction term.
Qualitatively, one can track the evolution of the system
in phase space, both for the homogeneous and nonhomo-
geneous cases. Results of the Vlasov integration are dis-
played in Fig. 2 for (M, e¢) = (0.5, 0.69), where the system
is shown to evolve towards a nonmagnetized QSS. The
initial water-bag distribution splits into two large reso-
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FIG. 2 (color online).
(0.5,0.69).

Phase space snapshots for (M, e) =

nances, which persist asymptotically: the latter acquire
constant opposite velocities which are maintained during
the subsequent time evolution, in agreement with the find-
ings of [11]. The two bumps are therefore an emergent
property of the model, which is correctly reproduced by the
Vlasov dynamics. For larger values of the initial magneti-
zation (M, > 0.89), while keeping e = 0.69, the system
evolves towards an asymptotic magnetized state, in agree-
ment with the theory. In this case, several resonances are
rapidly developed and eventually coalesce, giving rise to
complex patterns in phase space. More quantitatively, one
can compare the velocity distributions resulting from, re-
spectively, Vlasov and N-body simulations. The curves are
displayed in Figs. 3(a)—3(c) for various choices of the
initial conditions in the magnetized region. The agreement
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FIG. 3 (color online). Symbols: velocity distributions com-
puted via N-body simulations. Solid line: velocity distributions
obtained through a direct integration of the Vlasov equation.
Here e = 0.69 and M, = 0.3 (a), My = 0.5 (b), My = 0.7 (c).
Panel (d): Entropy at the stationary points as a function of the
initial magnetization: the solid line refers to the global maxi-
mum, while the dotted line to the saddle point.

is excellent, thus reinforcing our former conclusion about
the validity of the Vlasov model. Finally, let us stress that,
when e = 0.69, the two solutions (magnetized and non-
magnetized) [11] are associated with a practically indis-
tinguishible entropy level [see Fig. 3(d)]. As previously
discussed, the system explores an almost flat entropy land-
scape and can be therefore stuck in local traps, because of
finite size effects. A pronounced variability of the mea-
sured Mg is therefore to be expected. In this Letter, we
have analyzed the emergence of QSS, a universal feature
that occurs in systems with long-range interactions, for the
specific case of the HMF model. By comparing numerical
simulations and analytical predictions, we have been able
to unambiguously demonstrate that the Vlasov model pro-
vides an accurate framework to address the study of the
QSS. Working within the Vlasov context one can develop a
fully predictive theoretical approach, which is completely
justified from first principles. Finally, and most important,
results of conventional Vlasov codes are to be critically
scrutinized, especially in specific regions of parameters
space close to transitions from homogeneous to nonhomo-
geneous states.
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