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B-1050 Brussels, Belgium

S. Ciliberto, N. Garnier, S. Joubaud, and A. Petrosyan
Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cédex 07, France
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The time-reversal symmetry of nonequilibrium fluctuations is experimentally investigated in two out-
of-equilibrium systems: namely, a Brownian particle in a trap moving at constant speed and an electric
circuit with an imposed mean current. The dynamical randomness of their nonequilibrium fluctuations is
characterized in terms of the standard and time-reversed entropies per unit time of dynamical systems
theory. We present experimental results showing that their difference equals the thermodynamic entropy
production in units of Boltzmann’s constant.

DOI: 10.1103/PhysRevLett.98.150601 PACS numbers: 05.70.Ln, 02.50.Ey, 05.40.�a

Newton’s equations ruling the motion of particles in
matter are known to be time-reversal symmetric. Yet mac-
roscopic processes present irreversible behavior in which
entropy is produced according to the second law of ther-
modynamics. Recent works suggest that this thermody-
namic time asymmetry could be understood in terms
similar to those used for other symmetry breaking phe-
nomena in condensed matter physics. The breaking of
time-reversal symmetry should concern the fluctuations
in systems driven out of equilibrium. These fluctuations
may be described in terms of the probabilities weighting
the different possible trajectories of the systems. Albeit the
time-reversal symmetry of the microscopic Newtonian
dynamics says that each trajectory corresponds to a time-
reversed one, it turns out that distinct forward and back-
ward trajectories may have different probability weights if
the system is out of equilibrium. For example, the proba-
bility for a driven Brownian particle of having a trajectory
from a point A to a point B is different from that having the
same reverse trajectory from B to A.

This important observation can be further elaborated to
establish a connection with the entropy production. We
consider the paths or histories z � �z0; z1; z2; . . . ; zn�1�
obtained by sampling the trajectories z�t� at regular time
intervals �. The probability weight of a typical path is
known to decay as

 P��z0; z1; z2; . . . ; zn�1� � exp��n�h� (1)

as the number n of time intervals increases [1–4]. The
decay rate h is called the entropy per unit time, and it
characterizes the temporal disorder, i.e., dynamical ran-
domness, in both deterministic dynamical systems and
stochastic processes [1–4]. We can compare (1) with the
probability weight of the time-reversed path zR �
�zn�1; . . . ; z2; z1; z0� in the nonequilibrium system with
reversed driving constraints (denoted by the minus sign):

 P��zn�1; . . . ; z2; z1; z0� � exp��n�hR�: (2)

It can be shown that, out of equilibrium, the probabilities of
the time-reversed paths decay faster than the probabilities
of the paths themselves [5]. We may interpret this as a
breaking of the time-reversal symmetry in the invariant
probability distribution describing the nonequilibrium
steady state, the fundamental underlying Newtonian dy-
namics still being time-reversal symmetric. The decay rate
hR in Eq. (2) is called the time-reversed entropy per unit
time and characterizes the dynamical randomness of the
time-reversed paths [5,6]. In the case of Markovian sto-
chastic processes with discrete fluctuating variables, the
difference between both quantities hR and h gives the
entropy production of irreversible thermodynamics [5–
8]. A closely related result has been obtained for the
work dissipated in transient time-dependent systems [9].
However, many experimental systems have continuous
fluctuating variables and evolve in nonequilibrium steady
states. Therefore, we may wonder how to measure dynami-
cal randomness in such systems of experimental interest
and whether the time asymmetry of this property can be
experimentally detected and related to the thermodynamic
entropy production.

In this Letter, we provide experimental evidence for the
aforementioned time asymmetry in two nonequilibrium
systems: namely, a driven Brownian motion and a fluctuat-
ing electric circuit. For this purpose, the decay rates h and
hR are considered as so-called ��; �� entropies per unit
time, which characterize dynamical randomness in
continuous-variable stochastic processes [4]. These entro-
pies per unit time can be obtained by applying to the
present stochastic systems a method originally proposed
for the study of deterministic dynamical systems [1–3].
Thanks to this method, the ��; �� entropies per unit time of
the paths and the corresponding time-reversed paths can be
evaluated from two long time series measured with suffi-
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cient temporal and spatial resolutions, in two similar runs
but one driven with an opposite nonequilibrium constraint.
The experiment thus consists in recording a pair of long
time series in each system. The dissipated heat and ther-
modynamic entropy production are thus given by the dif-
ference between the two ��; �� entropies per unit time.

The first system is a Brownian particle dragged by an
optical tweezer, which is composed by a large aperture
microscope objective (� 63, 1:3) and by an infrared laser
beam with a wavelength of 980 nm and a power of 20 mW
on the focal plane. The trapped polystyrene particle has a
diameter of 2 �m and is suspended in a 20% glycerol-
water solution. The particle is trapped at 20 �m from the
bottom plate of the cell, which is 200 �m thick. The
detection of the particle position xt is done using a He-
Ne laser and an interferometric technique [10]. In order to
apply a shear to the trapped particle, the cell is moved with
a feedback-controlled piezo which ensures a perfect line-
arity of displacement. The motion of the dragged particle is
overdamped and can be modeled as the Langevin equation

 �
dxt
dt
� F�xt � ut� � ��t�; (3)

where � is the viscous friction coefficient, F � �@xV is
the force exerted by the potential V � kx2=2 of the laser
trap moving at constant velocity u, and ��t� is a Gaussian
white noise [11]. The stiffness of the potential is k �
9:62� 10�6 kg s�2. The relaxation time is �R � �=k �
3:05� 10�3 s.

The second system is an electric circuit driven out of
equilibrium by a current source which imposes the mean
current I [12]. The current fluctuates in the circuit because
of the intrinsic Nyquist thermal noise [11]. The electric
circuit is composed of a capacitance C � 278 pF in paral-
lel with a resistance R � 9:22 M� so that the time con-
stant of the circuit is �R � RC � 2:56� 10�3 s. This
electric circuit and the dragged Brownian particle,
although physically different, are known to be formally
equivalent by the correspondence �$ R, k$ 1=C, and
u$ I, while the particle position xt corresponds to the
charge qt inside the resistor at time t [11,12]. The variables
xt and qt are acquired at a sampling frequency 1=� �
8192 Hz. In both experiments, the temperature is T �
298 K.

In order to fix the ideas, we describe our method in the
case of the dragged Brownian particle. The heat dissipated
along a random trajectory during a time interval t is given
by [11,13]

 Qt �
Z t

0

dxt0

dt0
F�xt0 � ut0�dt0: (4)

After a long enough time, the system reaches a nonequi-
librium steady state, in which the entropy production is
related to the mean value of the dissipated heat according
to

 

diS
dt
�

1

T
dhQti

dt
�
�u2

T
: (5)

Our aim is to show that one can extract the heat dis-
sipated along a fluctuating path by comparing the proba-
bility of this path, with the one of the time-reversed path
having also reversed the displacement of the potential, i.e.,
u! �u. We first make the change to the frame comoving
with the minimum of the potential so that z � x� ut.
After initial transients, the system will reach a steady state
characterized by a stationary probability distribution. As
we are interested in the probability of a given succession of
states corresponding to a discretization of the signal at
small time intervals �, a multitime random variable is
defined according to Z � 	Z�t0�; Z�t0 � ��; . . . ; Z�t0 �
n�� ��
, which corresponds to the signal during the time
period t� t0 � n�. For a stationary process, their distri-
bution does not depend on the initial time t0. From the
point of view of probability theory, the process is defined
by the n-time joint probabilities P��z; dz; �; n� � Prfz<
Z< z� dz;�g � p��z�dz, where p��z� is the probabil-
ity density for Z to take the value z � �z0; z1; . . . ; zn�1� at
times t0 � i� for a nonequilibrium driving � � u=juj �
�1. Since the process is Markovian, the joint probabilities
can be decomposed into the products of the Green func-
tions G�zi; zi�1; ��dzi for i � 1; . . . ; n. G�z; z0; t� gives the
probability density for the position to be z at time t given
that the initial position was z0 [14,15]. To extract the
dissipation occurring along a single trajectory, one has to
look at the ratio of the probability of the forward path over
the probability of the reversed path having also reversed
the displacement of the potential. Indeed, taking the loga-
rithm of this ratio and the continuous limit �! 0, n! 1,
with n� � t, we find

 ln
P��z; dz; �; n�
P��zR; dz; �; n�

� �u
Z t

0
F�zt0 �dt

0 � �	V�zt� � V�z0�
;

(6)

which is exactly the heat Qt in Eq. (4) expressed in the z
variable and multiplied by the inverse temperature � �
�kBT�

�1. We notice that, alone, the first term gives the work
exerted by the trap [13,16]. Relations similar to Eq. (6)
have been obtained for the distribution of the work done on
a time-dependent system [17,18] and for Boltzmann’s
entropy production [19]. We emphasize that Eq. (6) also
holds for anharmonic potentials V and that the reversal of u
is essential to get the dissipated heat from the way the path
probabilities P� and P� differ.

Now, due to the continuous nature in time and in space
of the process, one has to consider (�, �) quantities, i.e.,
quantities defined on cells of size � and measured at time
intervals �. Therefore, we introduce the probability
P��Zm; �; �; n� for the path to remain within a distance �
of some reference path Zm, made of n successive positions
of the Brownian particle observed at time intervals � for the
forward process. The probability is obtained by searching
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for the recurrences ofM such reference paths or patterns in
the time series. Next, we also introduce the probability
P��ZRm; �; �; n� for a reversed path of the reversed process
to remain within a distance � of the reference path Zm
(of the forward process) during n successive positions.
According to a numerical procedure proposed by
Grassberger, Procaccia, and others [1,2] the entropy per
unit time can be estimated by the linear growth of the mean
‘‘pattern entropy’’ defined as

 H��; �; n� � �
1

M

XM
m�1

lnP��Zm; �; �; n�: (7)

By similarity, we introduce

 HR��; �; n� � �
1

M

XM
m�1

lnP��ZRm; �; �; n� (8)

for the reversed process. The ��; �� entropies per unit time,
h��; �� and hR��; ��, are defined by the linear growth of
these mean pattern entropies as a function of the time n�
[1,2,4]. In the nonequilibrium steady state, the thermody-
namic entropy production should thus be given by the
difference between these two quantities:

 

1

kB

diS
dt
� lim

�!0
lim
�!0
	hR��; �� � h��; ��
: (9)

It is important to note that the probabilities of the reversed
paths are averaged over the paths of the forward process in
order for Eq. (9) to hold. The entropy production is thus
expressed as the difference of two usually very large
quantities which increase with the scaling law ��2 for �,
� going to zero [4,20]. Nevertheless, their difference re-
mains finite and gives the entropy production in terms of
the time asymmetry of the dynamical randomness charac-
terized by the ��; �� entropies per unit time.

In order to test experimentally that entropy production is
related to this time asymmetry according to Eq. (9), we
have analyzed for specific values of juj or jIj a pair of time
series up to 2� 107 points each, one corresponding to the
forward process and the other corresponding to the re-
versed process, having first discarded the transient evolu-
tion. Figure 1 depicts examples of paths z�t� for the
Brownian particle in a moving optical trap.

For different values of � between 5.6–11.2 nm [21], the
mean pattern entropy (7) is calculated with the distance
defined by taking the maximum among the deviations
jZ�t� � Zm�t�j with respect to some reference path Zm for
the times t � 0; �; . . . ; �n� 1��. The forward entropy per
unit time h��; �� is evaluated from the linear growth of the
mean pattern entropy (7) with the time n�. The backward
entropy per unit time hR��; �� is obtained similarly from
the time-reversed pattern entropy (8). The difference of the
two dynamical entropies is depicted as in Fig. 2(a). The
good agreement with the entropy production (5) is the
experimental evidence that this latter is indeed related to

the time asymmetry of dynamical randomness as predicted
by Eq. (9).

On the other hand, we have analyzed by the same
method the time series of the RC electric circuit. We see
in Fig. 2(b) that the entropy production obtained from the
time series analysis of the RC circuit agrees very well with
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FIG. 1 (color online). Time series of typical paths z�t� for the
Brownian particle in the optical trap moving at the velocity u for
the forward process (upper curve) and �u for the reversed
process (lower curve) with u � 4:24� 10�6 m=s.
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FIG. 2 (color online). (a) Entropy production of the Brownian
particle versus the driving speed u. The solid line is given by
Eq. (5). (b) Entropy production of the RC electric circuit versus
the injected current I. The solid line is the Joule law diS=dt �
RI2=T. The dots are the results of Eq. (9).
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the known Joule law, which is a further confirmation of
Eq. (9).

We also tested the possibility to extract the heat (4)
dissipated along a single stochastic path by searching for
the recurrences in the time series according to Eq. (6). A
randomly selected path as well as the corresponding heat
dissipated are plotted in Fig. 3. We find a very good
agreement, so that the relation (6) is also verified for single
paths. In this case, the heat exchanged between the particle
and the surrounding fluid can be positive or negative
because of the molecular fluctuations. It is only by averag-
ing over the forward process that the dissipated heat takes
the positive value depicted in Fig. 2.

In conclusion, we measured the entropy production by
searching the recurrences of trajectories in the fluctuating

dynamics of two nonequilibrium processes. The experi-
ments we performed consisted in the recording of two long
time series. The first one corresponds to a forward experi-
ment, while the other is measured from the same experi-
mental setup except that the sign of the constraint driving
the system out of equilibrium has been reversed. From
these two time series, we are able to compute two dynami-
cal entropies, the difference of which gives the entropy
production. Moreover, we tested the possibility to extract
the dissipated heat along a single random path. This shows
that the entropy production arises from the breaking of the
time-reversal symmetry in the probability distribution of
the statistical description of the nonequilibrium steady
state. Since the decay rates of the multitime probabilities
of the forward and reversed paths characterize their dy-
namical randomness, the present results show that the
thermodynamic entropy production finds its origin in the
time asymmetry of the dynamical randomness.
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FIG. 3 (color online). Measure of the heat dissipated by the
Brownian particle along the forward and reversed paths of Fig. 1.
The trap velocities are �u, with u � 4:24� 10�6 m=s. We are
searching for recurrences between the two processes. (a) Inset: A
randomly selected trajectory in the time series. The probabilities
of the corresponding forward (solid circles) and the backward
(open circles) paths for � � 8:4 nm. These probabilities present
an exponential decrease modulated by the fluctuations. (b) The
dissipated heat given by the logarithm of the ratio of the forward
and backward probabilities according to Eq. (6) for different
values of � � k� 0:558 nm, with k � 11; . . . ; 20 in the range
6.1–11.2 nm. They are compared with the value (squares)
directly calculated from Eq. (4). For small values of �, the
agreement is quite good for short time and within experimental
errors for larger time.
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