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We analyze the hydrodynamic solutions for a dilute Bose-Einstein condensate with long-range dipolar
interactions in a rotating, elliptical harmonic trap. The static solutions and their regimes of dynamical
instability vary nontrivially with the strength of the dipolar interactions. We comprehensively map out this
behavior, and, in particular, examine the experimental routes toward unstable dynamics, which, in analogy
to conventional condensates, may lead to vortex lattice formation.
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In recent years a considerable amount of experimental
[1,2] and theoretical [3–7] work has been carried out on
dilute Bose-Einstein condensates (BECs) in rotating aniso-
tropic traps. Where short-range interactions dominate, a
vortex lattice forms when the rotational frequency (�) of
the system is � 0:7!?, where !? is the trapping fre-
quency perpendicular to the axis of rotation. Insight into
the mechanism of vortex lattice formation can be gained by
noting that 0:7!? closely coincides with the frequency at
which certain hydrodynamic surface excitations become
unstable [4,5]. Through comparison with experimental
results [1,2] and numerical solutions of the Gross-
Pitaevskii equation (GPE) [5–7] such instability has been
directly related to vortex lattice formation.

The above results apply to conventional BECs com-
posed of atoms of mass m with short-range s-wave inter-
actions, parametrized via g � 4�@2a=m, where a is the
s-wave scattering length. However, a recent experiment
has formed a BEC of chromium atoms with dipolar inter-
actions [8]. Chromium has an anomalously large magnetic
dipole moment of 6 bohr magnetons which leads to mag-
netic dipole-dipole interactions that are 36 times stronger
than those found in most alkali-metal atoms. Theoretical
work, using a modified GPE, has studied the effect of such
long-range interactions on the ground state vortex lattice
solutions [9]. However, the route to generating such states
has not been explored. For this purpose we solve the
hydrodynamic equations of motion for a dipolar BEC in
a rotating anisotropic harmonic trap. We show that the
solutions depend on both the strength of the dipolar inter-
actions "dd and the aspect ratio of the trap � � !z=!?, in
stark contrast to conventional BECs where they are inde-
pendent of both the strength of the interactions and � [3,4].
We evaluate the dynamical stability of our solutions, show-
ing that the region of � for which the solutions are stable
can be controlled via both "dd and �.

Consider a BEC with long-range dipole-dipole interac-
tions. The potential between dipoles, separated by r and
aligned by an external electric or magnetic field along a

unit vector ê, is given by [10]

 Udd�r� �
Cdd
4�

êiêj
��ij � 3r̂ir̂j�

r3 : (1)

For two atoms with dipoles induced by a static electric field
E � Eê, the coupling constant Cdd � E2�2=�0 [11,12].
Alternatively, if the atoms have permanent magnetic di-
poles dm aligned in an external magnetic field B � Bê, one
has Cdd � �0d

2
m [13]. Denoting � as the condensate den-

sity, the dipolar interactions give rise to a mean-field
potential

 �dd�r� �
Z
d3r0Udd�r� r0���r0�; (2)

which can be included in a generalized GPE [12–14] for
the BEC. In the Thomas-Fermi (TF) regime [15] the GPE
describing a static dipolar BEC in a harmonic trapping
potential V�r� � m�!2

xx
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where � is the chemical potential. For ease of calculation
the dipolar potential �dd�r� can be expressed in terms of a
fictitious ‘‘electrostatic’’ potential ��r� [16]

 �dd�r� � �3g"ddêiêj

�
rirj��r� �

�ij
3
��r�

�
; (4)

where ��r� �
R
d3r0��r0�=�4�jr� r0j� and

 "dd � Cdd=3g (5)

parametrizes the relative strength of the dipolar and s-wave
interactions. Self-consistent solutions of Eq. (3) for ��r�,
��r�, and hence �dd�r� can be found for any general
parabolic trap; see Appendix A of Ref. [16].

Consider atoms in a harmonic potential rotating at a
frequency � about the z axis. In the mean-field approxi-
mation the evolution of the condensate field  �r; t� is
described by the time-dependent GPE. Writing the con-
densate field in terms of density ��r; t� and phase S�r; t�
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and neglecting the quantum pressure, we obtain the super-
fluid hydrodynamic equations
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@t
�r � ���v��	 r�
 � 0; (6)
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v �v

2
�
V
m
�
g�
m
�

�dd

m
�v � ��	r


�
�0; (7)

where v � �@=m�rS is the fluid velocity field in the labo-
ratory frame, expressed in the coordinates in the rotating
frame. Setting @�=@t � @v=@t � 0 we look for stationary
solutions with an irrotational velocity field of the form
[3,4]

 v � ��yî� xĵ�; (8)

where �, the amplitude of the velocity field, is to be
determined. Then, Eq. (7) leads to

 � �
m
2
� ~!2

xx2 � ~!2
yy2 �!2

zz2� � g��r� ��dd�r�; (9)

where ~!2
x � !2

x � �
2 � 2�� and ~!2

y � !2
y � �

2 � 2��
are effective trap frequencies. The form of Eq. (9) is
identical to Eq. (3). Hence we can use the methodology
presented in Ref. [16] to calculate �dd�r�. An exact solu-
tion of Eq. (9) is given by
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�
for � � 0; (10)

where n0 � 15N=�8�RxRyRz� is the central density.
Following Ref. [16] the dipole potential for a polarizing
field aligned along the z axis is
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where
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with k � x, y, z, 	k � Rk=Rz, and
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Thus we can rearrange Eq. (9) to obtain the density
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where ~~!xfyg � ~!2
xfyg � 3"dd	x	y
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2
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g. Comparing the x2, y2, and z2 terms in
Eqs. (10) and (14) we find the three self-consistency rela-

tions:
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and R2
z � �2gn0=m!2

z�� . Using Eq. (14) we find the fol-
lowing stationary solutions to Eq. (6):
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In the limit "dd � 0 the solutions of Eq. (16) are indepen-
dent of g and �. However, for "dd � 0 the solutions to
Eq. (16) are dependent on both "dd and �.

Introducing the parameter � � �!2
y �!2

x�=�!2
x �!2

y�

to define the anisotropy of the trap, we evaluate Eqs. (15)
and (16) self-consistently to determine the static hydro-
dynamical solutions, in the rotating frame. Figure 1(a)
shows the solutions to Eq. (16) for various values of "dd
with � � 1 and � � 0. For "dd � 0 (solid curve) we find a
bifurcation point at �b � !x=

���
2
p

[3,4] which exactly co-
incides with the vanishing of the energy of the quadrupolar
mode in the rotating frame. For �<�b, one solution,
corresponding to � � 0, is found. For �>�b, three

solutions appear, � � 0 and � � �
����������������������
2�2 �!2

x

p
=!x [3].

The two additional solutions are a consequence of the
quadrupole mode being excited for � � !x=

���
2
p

. It is a
remarkable feature of the pure s-wave case that these
solutions do not depend upon g. This is because in the
TF limit surface excitations with angular momentum @l �
@qlR, where R is the TF radius and ql is the quantized wave
number, obey the classical dispersion relation !2

l �
�ql=m�rRV involving the local harmonic potential V �
m!2

xR
2=2 evaluated at R [17]. Consequently !l �

��
l
p
!x,

which is independent of g. However, in the case of long-
range dipolar interactions the potential �dd of Eq. (4) gives

 

2 4 6 8 100
0.54

0.60 ε

0.66

0.72 (b)

dd

(a)

0 0.6 0.8 1.0

0.2

0.6

1.0

-0.2

-0.6

-1.0

x
α/

ω

x
b

Ω
 /

ω

xΩ /ω γ

FIG. 1. (a) Irrotational fluid velocity amplitude � as a function
of the trap rotational frequency �, as obtained from Eq. (16), for
� � 1, � � 0, and "dd � 0 (solid curve), "dd � 0:25 (short
dashed curve), "dd � 0:5 (long dashed curve), "dd � 0:75
(dash-dotted curve), and "dd � 0:99 (dotted curve).
(b) Bifurcation point �b versus � for different dipolar interac-
tions strengths; "dd increases, in the direction of the arrow, from
0 in steps of 0.1, with the lowest curve being for "dd � 0:99.
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nonlocal contributions, breaking the simple dependence of
the force �rV upon R [10]. Thus, we expect the resonant
condition for exciting the quadrupolar mode, i.e., �b �
!l=l (with l � 2), to change with "dd. In Fig. 1(a) we see
that this is the case: as dipole interactions are introduced,
our solutions change and the bifurcation point (�b) moves
to lower frequencies.

In contrast to the s-wave case, the shape of the BEC
determines the potential �dd. For an oblate (	x;y > 1)
BEC, more dipoles lie side-by-side, giving a net repulsive
interaction, in comparison to the prolate (	x;y < 1) case
where a majority sit end-to-end, inducing a net attractive
interaction. In the limits of 	x;y ! 0 and 	x;y ! 1 the
angular dependence of the interactions plays no role and
the gas behaves conventionally, but in the intermediate
regime the role of 	x;y, and hence the trap aspect ratio, is
important. In Fig. 1(b) we plot �b as a function of � for
various values of "dd. For "dd � 0 we find that the bifur-
cation point remains unaltered at �b � !x=

���
2
p

as � �
!z=!x is changed [3,4]. As "dd is increased the value of
� for which �b is a minimum changes from a trap shape
which is oblate (� > 1) to prolate (� < 1).

Consider now the effect of finite trap anisotropies (� >
0). In Fig. 2(a) we have plotted the solutions to Eq. (16) for
various values of "dd with � � 1 and � � 0:02. As in the
case without dipolar interactions [3,4] the solution � � 0
is no longer a solution for all �. The effect of introducing
the anisotropy, in the absence of dipolar interactions, is to
increase the bifurcation frequency �b. Turning on the
dipolar interactions, as in the case of � � 0, reduces the
bifurcation frequency.

We now analyze two procedures for generating an in-
stability by tracing different paths on Fig. 2(a). Both
procedures lead to hydrodynamic instabilities which in
conventional BECs have been experimentally [1,2]
and theoretically [5–7] linked to vortices entering the
BEC and the eventual formation of a vortex lattice.
However, the nature of the instability is different in the
two cases.

Procedure I.—� is fixed at �>�b�� � 0� and the
trap anisotropy is adiabatically turned on. As for conven-
tional BECs [3,5,6], as � is increased adiabatically, from
zero, the � � 0 solution moves to negative values of � and
the BEC follows this route. However, as � is increased
further, the edge of the lower branch �b��� shifts to higher
frequencies. At some critical value of �, �b��� � �, the
lower branch ceases to be a solution for this value of �. As
the dipole interactions are increased the bifurcation fre-
quency is reduced and the range of � for which this type of
instability can occur increases from �!x=

���
2
p
; !x
 to

�0:5!x;!x
. In addition, dipolar interactions increase the
value of � for which lower branch solutions exist.

Procedure II.—� is fixed and � is introduced adiabati-
cally, such that the BEC follows the upper branch solutions
(�> 0) of Eq. (16). Although these are static solutions
they are not necessarily dynamically stable. Below we
generalize the analysis of Ref. [4] to examine the dynami-
cal stability of the solutions to Eq. (16).

Consider small perturbations in the BEC density and
phase of the form � � �0 � �� and S � S0 � �S then, via
Eqs. (6) and (7), the dynamics of such perturbations can be
described, to first order, as
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g
m �1� "ddK�

r � �0r ��r � v� � vc � r


�
�S
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� �
;

(17)

where K � �3�@2=@z2�
R
dxdydz=�4�jr0 � rj� � 1 and

vc � v��	 r. As in Ref. [4] we consider a polynomial
ansatz, of order n in the coordinates x, y, z, and evaluate the
evolution operator for the perturbations. If one or more of
the eigenvalues 
 has a positive real component the sta-
tionary solution is dynamically unstable. However, imagi-
nary eigenvalues correspond to stable oscillatory modes of
the system [18]. Below we consider both the stable and
unstable modes of the upper branch static solutions for � �
1 and � � 0:02.

Initially we consider the positive imaginary eigenvalues
of Eq. (17), associated with stable oscillatory modes of the
dipolar BEC. As expected we find three modes associated
with center of mass oscillations. For � � 0 the frequencies
of these modes are Im�
� � !x � !z and !y. Under
rotation the motion in x and y is coupled and so the
frequencies of the two center of mass modes in the x-y
plane are shifted [17], while center of mass motion in the z
direction is unaffected by rotation. These modes are inde-
pendent of the strength of the dipolar interactions since
they do not alter the shape of the BEC. Higher frequency
modes are associated with the breathing modes of the
system [18]. Since these modes do alter the shape of the
BEC, and thus the dipolar mean-field potential �dd�r�, we
find that they are dependent upon "dd. However, for � �
0, the bulk breathing mode at Im�
� � !x

���
5
p

[18] is asso-
ciated with a perturbation in x, y, and z which is equivalent
to a uniform rescaling of the density and as such the
frequency of this mode is almost independent of "dd.
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FIG. 2. (a) � vs �, as in Fig. 1(a) but for � � 0:02. (b) The
maximum positive real eigenvalues of Eq. (17) (solid curves), as
a function of �, for � � 0:02, � � 1, n � 3, and "dd � 0, 0.2,
0.4, 0.6, 0.8, 0.95, and 0.98; "dd increases in the direction of the
arrow. The short and long dashed curves are additional positive
eigenvalue solutions for "dd � 0:95 and 0.98, respectively.

PRL 98, 150401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 APRIL 2007

150401-3



Finally, we consider the real positive eigenvalues of
Eq. (17), associated with regions of instability for the upper
branch static solutions. In the limit of "dd � 0 we repro-
duce Fig. 2 of Ref. [4], with the solutions being unstable in
the range �0:78!x;!x
 for � � 0:02. In Fig. 2(b) we have
plotted the real positive eigenvalues, Re�
�, of Eq. (17),
as a function of � for various values of "dd with n � 3.
For higher values of "dd [0.95 and 0.98 in Fig. 2(b)]
there can be more than one real positive eigenvalue,
thus we define the region of instability as the range over
which max�Re�
�> 0
, as shown by the solid curves in
Fig. 2(b) [19]. As the dipolar interaction strength is in-
creased the lower bound in � for the unstable region is
reduced. For example, for "dd � 0:6 the range of rota-
tion frequencies where the upper branch solution is un-
stable is �0:75!x;!x
, this increases to �0:67!x;!x
 for
"dd � 0:98.

By calculating the static hydrodynamic solutions of a
rotating dipolar BEC and studying their dynamical stabil-
ity, we have predicted the regimes of instability of the
condensate. In general we find that the bifurcation fre-
quency �b decreases in the presence of dipolar interac-
tions. Thus, for Procedure I dipolar interactions increase
the range of � for which instability occurs. For a fixed �
[at �>�b�� � 0�] and an adiabatic increase in �, the
critical anisotropy at which we expect instability to occur
will be higher than for a conventional BEC. Furthermore,
we find that the size of this shift not only depends on the
strength of the dipolar interactions but also on the aspect
ratio of the trap, with the maximal shift being for � < 1
(�dd ! 1). For a fixed anisotropy and an adiabatic in-
crease in � we find that as "dd is increased the lower
bound on the rotation frequency at which a rotating dipolar
gas will be unstable to perturbations is decreased. In con-
ventional BECs these instabilities have been related to
vortex lattice formation [5]. This occurs, primarily, be-
cause the instability disrupts the BEC at an � which is
greater than the rotation frequency at which it is energeti-
cally favorable to have a vortex state [20]. However, in a
prolate trap the rotational frequency at which it is ener-
getically favorable to form a vortex in a dipolar BEC
grows rapidly as "dd is increased [21] and can exceed the
frequency at which we expect an instability to occur. The
final state under these circumstances warrants further
investigation.
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