
Diverse Population-Bursting Modes of Adapting Spiking Neurons

Guido Gigante,1,* Maurizio Mattia,1 and Paolo Del Giudice1,2

1Department of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy†
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We study the dynamics of a noisy network of spiking neurons with spike-frequency adaptation (SFA),
using a mean-field approach, in terms of a two-dimensional Fokker-Planck equation for the membrane
potential of the neurons and the calcium concentration gating SFA. The long time scales of SFA allow us
to use an adiabatic approximation and to describe the network as an effective nonlinear two-dimensional
system. The phase diagram is computed for varying levels of SFA and synaptic coupling. Two different
population-bursting regimes emerge, depending on the level of SFA in networks with noisy emission rate,
due to the finite number of neurons.
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Global oscillations and synchronization emerging in
large populations of coupled oscillators are widely studied
for their relevance in fields ranging from physics to biol-
ogy. In particular, synaptically coupled network of neurons
spontaneously show both regular and irregular bursts of
activity which, besides playing a role in the developmental
stages [1], are thought to complement rate-based coding in
information transmission [2,3]. Among several effects in-
volved in promoting and sustaining bursting [4], a promi-
nent role is played by spike-frequency adaptation (SFA),
by which a neuron receiving a sustained stimulation gradu-
ally lowers its firing rate. Slow potassium currents are
thought to play a major role in SFA [4], and a first step
in modeling SFA involves an additional calcium-gated
potassium current IAHP, temporarily hyperpolarizing the
cell upon spike emission, with a recovery time of the order
of hundreds of milliseconds [5]. Several theoretical ap-
proaches have investigated the collective behavior of popu-
lation of integrate and fire (IF) neuron models including
SFA [6]. Bursting activity can emerge from the competi-
tion between the recurrent synaptic excitation and the self-
inhibition induced by adaptation, as proven using both
simulations, phase-space analysis of phenomenological
rate equations [7] and mean-field approaches both in fully
connected networks [8] and in sparsely connected noisy
networks [9]. The resulting bursting phenomenology is
reminiscent of a relaxation oscillator: a stable high-rate
fixed point is destabilized by SFA via a saddle-node bifur-
cation, bringing the network down to a low fixed point that
takes over; with time, the level of SFA decreases, until the
low fixed point gets in turn destabilized, again via a saddle-
node bifurcation, and the cycle restarts. This behavior
seems to be coherent with experimental findings from
cultured networks of nervous cells [9,10].

In this Letter we show that several pieces of the available
theoretical understanding summarized above can be inte-
grated in a unifying approximate formulation; more im-
portantly, the theory predicts, in addition to the bursting
induced by bistability mentioned above, a regime in which

population ‘‘spikes’’ appear if the firing rate crosses a
threshold, in a way reminiscent of the single neuron excit-
ability described by Fitzhugh and Nagumo et al. [11]. In
the presence of finite-size fluctuations, the two bursting
regimes exhibit different statistical properties, in terms of
both the interburst interval distribution, and the duration of
bursts, as a function of the level of adaptation and the
intensity of synaptic coupling.

Reduced dynamics of coupled noisy adapting neu-
rons.—We consider a network of N IF neurons with con-
stant leakage, bounded membrane potential (the VLSI IF
neurons [12], VIF in the following) and SFA modeled as an
after-hyperpolarization current. The membrane potential
Vi and the calcium concentration Ci of the ith neuron
evolve as _Vi � ��� gCi �

P
kjJij��t� t

j
k � �ij� � I

ext
i

and _Ci � �Ci=�c �
P
k��t� t

i
k�, where � is the constant

leakage, �c is the characteristic time of the calcium inte-
gration, i; j � 1; . . .N label the neurons, fJijg are the effi-
cacies of the (instantaneous) excitatory synapses, �ij are
the delays for fj! ig spikes, and tjk is the time of the kth
spike emitted by the jth neuron. The network is sparsely
connected; for each neuron, �N nonzero Jij are extracted
from a truncated Gaussian distribution with mean J and
variance J2�2. Iext

i is a Gaussian external current with
moments �ext and �2

ext, and then single neurons are sto-
chastic dynamical systems. Vi is constrained to the (0, �)
interval and when it crosses the threshold � a spike is
emitted.

Assuming a large number of synaptic contacts per neu-
ron and a small average synaptic efficacy, the diffusion and
mean-field approximations allow us to describe the sto-
chastic system through a bidimensional nonlinear Fokker-
Planck (FP) equation, with appropriate boundary condi-
tions, for the evolution of the probability density function
(PDF) p�v; c; t�, as described in [13] for the single neuron
case. �c is supposed to be much longer than the average
interspike interval, soCi�t� filters out the fluctuations of the
single neuron activity, and can be well approximated by the
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population average, c�t�. p�v; c; t� then collapses, at each
instant, in a one-dimensional subspace parallel to the v
direction, and the system is well described by a one-
dimensional FP equation, in which c�t� appears as a pa-
rameter, that will depend on the instantaneous emission
rate ��t� (the probability current across the emission
threshold). The �-dependent moments of the Gaussian
current driving the FP equation are � � ��� gc�
�NJ���ext and �2 � �NJ2�1� �2��� �2

ext.
Projecting the PDF on the moving basis of the eigen-

functions j	ki of the one-dimensional FP operator [14,15]
leads to the following matrix emission rate equation for the
network population activity ��t�:

 

_~a � ���M _�� S _�2� ~a� ~m _��~s _�2;

� � �� ~f � ~a; _c � �c=�c � �;
(1)

where all the functions depend explicitly only on ��t� and
c�t�. The infinite vector ~a gives the projection of p�v; t� on
the moving basis. f ~fgk � 1=2�2@vj	kijv�� are the contri-
butions of the nonstationary modes of the FP operator to
��t� and � is the stationary current-to-rate gain function
[12]. � is the infinite diagonal matrix of the (possibly
complex) eigenvalues 
k associated to j	ki, whereas the
terms M _� and S _�2 express the couplings between non-
stationary modes (fMgkl � h@� kj	li and fSgkl �
h@�2 kj	li, where h kj are the eigenfunctions of the ad-
joint FP operator); in the interesting regimes, � turns out to
be a posteriori dominant with respect to M _� and S _�2

contributions, which will be thus neglected in the follow-
ing, only for computational convenience. ~m _� and ~s _�2 are
the coupling terms between stationary and nonstation-
ary modes (f ~mgk � h@� kj	0i and f~sgk � h@�2 kj	0i)
[15,16].

In Eq. (1) we can again distinguish the fast dynamics of
the neurons membrane potentials related to ~a, mainly
related to dominant terms in ��1, typically of order of
few milliseconds or less, and the slow one of c, with
characteristic time �c (up to hundreds of milliseconds).
Although the two cooperate in determining the dynamics
of �, the projections ~a, which are in general nonzero, adapt
almost instantaneously to changes in � and c. This amounts
to safely accepting the approximation _~a � 0 in Eq. (1).
More precisely it is assumed that j ~f � ~wj � j ~f ���1 _~wj,
where ~w � ~m _��~s _�2 is the forcing term for the dy-
namics of ~a in Eq. (1). Considering only the first, slowest
nonstationary modes, the approximation reduces to �c �
1=jRe
1j.

We remark that a naı̈ve, fully adiabatic approximation
would make p�v; c; t� coincide for each t with the sta-
tionary PDF determined by the instantaneous value of �
and c ( ~a � 0); in the approximation we adopt, which is
made possible by the spectral formulation in Eq. (1), the
system is out of equilibrium, as long as � and c vary ( ~a � 0
and can be large), and the moving basis follows instanta-
neously ��t� and c�t�.

In this approximation Eq. (1) can be cast in the form

 �� _� � ��eff� � � _c � �c=�c � � (2)

where �� � �1=�1� �2� and ��eff� � ���

c�2=�c�=�1� �2�, with �1 � ~f ���1� ~m@��� ~s@��
2�

and �2 � g ~f ���1 ~m. The series depend on the network
connectivity and the average delay h�iji. In particular,
��eff� is the effective stationary current-to-rate gain func-
tion in presence of adaptation. In the absence of synaptic
coupling, when �� � 0, Eq. (2) reduces to an expression
similar to the one reported in [17], in which a fully adia-
batic approximation is adopted. The method described and
the reduction performed are valid for a wide class of IF
neurons; the detailed behavior of the resulting equations
however can change, and a model-dependent analysis is
needed for quantitative predictions.

We have therefore reduced the stochastic dynamics of
the system to a bidimensional nonlinear dynamical system,
evolving in the (c, �) plane. The left panel in Fig. 1 shows a
sample orbit from Eq. (2) (black solid line) which well
predicts the limit cycle observed in a simulation of N �
104 interacting VIF neurons (gray solid line). We stress
again that the dynamics described by Eq. (2) differs from
other ‘‘first order’’ approaches (as described by Wilson and
Cowan [18]) in its state dependence of the time constant
��, as can be seen in the right panel of Fig. 1 where �� vs �
is plotted for three different c values. This is due to having
projected p�v; c; t� on a moving, rather than fixed, basis,
and makes it possible for Eq. (2) to describe well a rich
repertoire of dynamical states, as we will argue in the
following. The nonmonotonic dependence on � and the
wide range spanned confirms that a quantitative descrip-
tion of the system’s global dynamics would not be obtained
from simpler approaches with constant characteristic
times.

System phases and bifurcations.—To study the dynami-
cal states accessible to the system we explore the plane
spanned by g, the ‘‘level’’ of SFA, and the excitatory
synaptic coupling J, which is proportional to the adimen-
sional quantity �0 � @�=@�. The stability boundaries of
available collective states are illustrated in Fig. 2, together
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FIG. 1. Left panel: sample orbit from Eq. (2) (gray solid line)
and from simulations (black solid line), and nullclines of Eq. (2)
(dashed lines). Right panel: the �� characteristic time appearing
in Eq. (2) is plotted vs � for three values of c (vertical sections of
the phase plane on the left).
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with sample plots of the corresponding network activity
from simulations [19].

All points in the plane are chosen adjusting network
parameters to have a fixed point, stable or not, at � �
5 Hz with the same � and �2. Hopf and saddle-node
bifurcation lines are computed studying the Jacobian of
Eq. (2). In the white region of the central panel in Fig. 2,
hereafter named LAS (low-rate asynchronous state), the
5 Hz fixed point is the only state available and is stable.
Crossing from left the gray solid line a stable global
oscillatory state appears (GO) in addition to LAS: the
two are simultaneously stable in the LAS and GO region,
and finite-size fluctuations can make the network switch
between the two. The bifurcation separating the LAS and
LAS and GO regions is evaluated by testing, through a
numerical integration of Eq. (2), the existence of a limit
cycle around the asynchronous state. As an illustration,
panel (b) shows a network in the LAS and GO region
undergoing large global oscillations until a fluctuation
makes it decay to the LAS. We remark that the observed
bursts are genuine population oscillations: by integrating
��t� across a burst, it can be verified that almost all neurons
are recruited.

For high enough recurrent excitation �0, increasing g
results in stronger self-inhibition which promotes oscilla-
tions: LAS is destabilized and the system crosses a Hopf
bifurcation, beyond which a global oscillatory state is the
only stable attractor (GO light gray region). Entering the
GO border from the LAS or the LAS and GO the system
crosses a supercritical or subcritical Hopf bifurcation line,
respectively, as proven by the evaluation of a third order

expansion of Eq. (2) around the fixed point at 5 Hz. Panel
(a) illustrates the oscillatory activity of a network just
beyond the supercritical Hopf bifurcation. In the region
close to the Hopf bifurcation line, crossing from above the
dashed line the system exhibit a ‘‘Canard bifurcation,’’ by
which the radius of the system orbits in the phase plane
abruptly increases.

For low g, and not too high �0, the system does not
exhibit global oscillations. In the LAS and HAS (for high-
rate asynchronous state) gray region two asynchronous
stable fixed points coexist. Again, finite-size fluctuations
can make the system alternate between the two, as illus-
trated in panel (d) (notice the � overshoot when leaving the
LAS state for HAS, due to the temporarily low level of c�t�,
and the transient very low rate when returning abruptly to
LAS, due to the high self-inhibition level). For very low g,
where adaptation has a negligible effect, increasing �0,
with constant g, the system crosses a saddle-node bifurca-
tion line, beyond which LAS is destabilized and VAS (very
low-rate asynchronous state) takes over. Panel (e) illus-
trates the dynamics in the VAS and HAS region: starting
from a VAS, driven by a stimulation at t � 2:5 s, the
network moves to a HAS.

Two bursting regimes.—The shape of the nullclines of
Eq. (2) and the above discussion would suggest that our
effective 2D nonlinear system should share with Fitzhugh-
Nagumo neuron models key features like the excitability
which allows the onset of the action potentials. Intuition
suggests, and simulations confirm, that the region of excit-
ability is a portion of the LAS phase, close enough to the
LAS and GO border, where the global oscillatory state is
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FIG. 2. Phase diagram of the reduced system of Eq. (2) in the ��0; g�c� plane (central panel). Shaded regions and bifurcation lines
are described in the text. Lateral panels (a)–(e) illustrate typical time courses of ��t� from simulations of N interacting VIF neurons:
(a) GO; (b) LAS and GO; (c) LAS close to the LAS and GO region; (d) LAS and HAS; (e) VAS and HAS (dashed line: unstable fixed
point at 5 Hz; dotted line: time of a brief external stimulation). N � 103 unless for (a) N � 5	 105 and (b) N � 25	 103.
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not stable yet, but the system can be very easily driven to
wild � excursions by finite-size fluctuation crossing a
suited threshold. In Fig. 2, panel (c), it is seen that, irreg-
ularly in time (it is a fluctuation driven process) the net-
work produces ‘‘spikes.’’ For lower levels of SFA the type
of bursting behavior discussed in [7–9] appears [see an
example in panel (d) of Fig. 2].

The two bursting regimes exhibit different statistical
properties of the interburst intervals (IBI) and the duration
of the bursts, as Fig. 3 illustrates. Left panels show IBI
distributions sampled for low (bottom) and high (top) g.
Increasing thickness of the solid lines indicates increasing
�0. For the higher g, which corresponds to a regime of
excitability, higher �0 imply getting closer to the LAS and
GO border, and the system goes from a regime of very
irregular, rare bursting (essentially Poissonian IBI distri-
bution), to more frequent and regular bursting (the IBI
distribution shrinks shifting to the left). For the bursting
regime related to bistability (lower g value), the IBI distri-
bution is less sensitive to �0: for higher �0 the basin of
attraction of the lower state shrinks, so bursting gets more
frequent, but it remains essentially a Poisson-like process.
The two panels on the right describe how the distribution of
the bursts duration varies with �0 for the two levels of SFA.
The top panel shows that in the excitable regime bursts are
brief and their duration does not depend much on �0, while
for the lower g, as the higher state gets more and more
stable the time the network spends there is longer, which
makes the burst duration distribution spread significantly.

Such diverse bursting modes could be tested in principle
in cultured nervous cells grown on multielectrode arrays
[20,21]: the control of, e.g., the cell density and the con-
nectivity level, and the pharmacological manipulations

modulating both synaptic efficacy and SFA, could allow
the exploration of an equivalent phase plane, aiming at a
quantitative link with the theory.
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