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Analysis of Dynamics of Excitation and Dephasing of Plasmon Resonance Modes in Nanoparticles
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A novel theoretical approach to the dynamics analysis of excitation and dephasing of plasmon modes in
nanoparticles is presented. This approach is based on the biorthogonal plasmon mode expansion, and it
leads to the predictions of time dynamics of excitation of specific plasmon modes as well as their steady
state amplitude and their decay. Temporal characteristics of plasmon modes in nanoparticles are expressed
in terms of their shapes, permittivity dispersion relations, and excitation conditions. In the case of the
Drude model, analytical expressions for time-dynamics of plasmon modes are obtained.
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Plasmon resonances in nanoparticles have been the fo-
cus of considerable experimental and theoretical research
lately. This research is motivated by numerous scientific
and technological applications of these resonances in such
areas as near-field microscopy, nanolithography, surface
enhanced Raman scattering, nanophotonics, biosensors,
optical data storage, etc. Steady state properties of plasmon
resonances in nanoparticles have been mostly studied,
while the dynamics of specific plasmon modes is the least
understood area of plasmonics. This state of affairs has
prompted the current burst of activity in the experimental
research of plasmon dynamics. This research is exempli-
fied by publications [1-6], where the plasmon dynamics
and plasmon decay (dephasing) rates have been exten-
sively studied by using advanced femtosecond techniques.
The theoretical temporal analysis of plasmon modes is also
very important to fully comprehend the time-dynamics of
mode excitation and decay as well as to estimate their
steady state amplitude. The temporal analysis of plasmon
resonance modes can be very instrumental in the area of
light controllability of plasmon resonances in semiconduc-
tor nanoparticles [7,8], where proper time synchroniza-
tions of excitations of specific plasmon modes may be
needed.

In this Letter, we present a self-consistent theoretical
technique for the temporal analysis of specific plasmon
modes in nanoparticles and compare (where it is possible)
the theoretical results with experimental data. This tech-
nique is based on the biorthogonal plasmon mode expan-
sion, and it leads to the predictions of time-dynamics of
excitation of specific plasmon modes and their decay as
well as their steady state amplitude in terms of nanoparticle
shapes, permittivity dispersion relations, and excitation
conditions. For instance, an explicit formula is derived
for the steady state amplitude of plasmon modes in terms
of real and imaginary parts of dielectric permittivity, am-
plitude of incident field, and its spatial orientation with
respect to dipole moments of the plasmon modes. In the
case of the Drude model, analytical expressions for plas-
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mon dynamics are obtained which suggest that the recip-
rocal of the Drude damping factor can be identified with
the decay (dephasing) time of plasmon modes.

To start the discussion, consider a nanoparticle with
boundary S and dielectric permittivity e(w) in free-space
with dielectric constant €. It has been demonstrated [7—
10] that the resonance values €, of dielectric permittivity
and corresponding resonant plasmon modes can be found
by solving the eigenvalue problems for the boundary in-
tegral equation
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or its adjoint equation
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where o, (M) has the physical meaning of surface electric
charges on § that produce electric field E; of k-th plasmon
mode, 7,(M) has the physical meaning of dipole densities
on § that produce displacement field D, of k-th plasmon
mode, while all other notations have their usual meaning.

The resonance values of €, and A; are related by
€k — €o
Ay =———. 3
k €y + €p ( )

After A are computed and resonance values of permit-
tivity €, are found by using (3), resonance frequencies are
determined from the dispersion relation:

€, = € (wy) = Re[e(wy)]. €]

It turns out that eigenfunctions o (M) and 7,(M) are
biorthogonal:

345 (M) (M)dSy, = 6, 5)
Thus, the set of eigenfunctions o (M) can be used for the

biorthogonal expansion of actual boundary charges o (M, t)
induced on particle boundary during the excitation process:
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where, according to (5), the expansion coefficient a;(z) is
given by the formula

ay(t) = fs (M, 17 (M)dSy. )

It is clear that the time evolution of the expansion coeffi-
cient a,(r) reveals the time-dynamics of k-th plasmon
mode corresponding to the eigenfunction o(M). Since
the medium of resonant nanoparticle is dispersive and
exhibits nonlocal in time constitutive relation D(z) vs
E(?), the frequency domain technique will be employed
for the calculations of a(¢). This means that the Eq. (6) and
(7) will be Fourier transformed
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and the equation for d;(w) will be first derived and solved.
Subsequently, a,(¢) will be found through inverse Fourier
transform.

To derive the equation for d,(w), the Fourier trans-
formed boundary condition for the normal components of
electric field on S is invoked:

~ e()EV(Q, ).
(10)

e(w)E; (0, ») — €F, (0, ) =€

Here, E,/ (0, w) and E, (Q, ) are the limiting values of
the normal components of Fourier transformed electric
field at Q € S from inside and outside S, respectively,
while EE,O)(Q, w) is the Fourier transformed normal com-
ponent of the incident field on S.

By using formula 5(Q, w) = €,[E, (Q, w) — E;} (0, w)],
the boundary condition (10) can be rearranged as follows:

(0 w)

w) = EQ(w). (11)
e(w) — €

- E; (0
Now it can be recalled [11,12] that
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By substituting (12) into (11) and then by using expan-
sion (8) and formulas (1) and (9), the following expression
for d;(w) is derived:

E;(Q w) =~

QdSM (12)
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a(w) =

The last integral can be simplified because the incident
field E©(Q, ) is practically uniform within nanoparticles.
Thus, this field can be represented as EQ(Q, 1) = Eqf(2).
By using this form of E©(Q, r) in (13) and taking into
account formula (3) and the fact that due to the “‘scaling”
freedom provided by normalization condition (5) the fol-
lowing expression ¢¢n,7,(Q)dSy = (€, — €y)py for the
dipole moment p; of k-th plasmon mode (see [8]) can be
used, the last formula can be represented in the form

d(w) = (Eg - ppgu(o)f(w), (14)
where
fulw) =@ (15)
€, — €(w)

and f(w) is the Fourier transform of f(z).

Formulas (14) and (15) are remarkably simple, and they
clearly suggest that g,(w) can be construed as normalized
(by E - py) transfer function of k-th plasmon mode. The
formula (15) reveals the resonance nature of excitation of
k-th plasmon mode at the frequency w. Indeed, according
to (4), at this frequency €; — €(w;) = —ilm[e(w;)] and
the magnitude of g;(w) will be narrow peaked if €”(wy) is
sufficiently small, that is when the specific plasmon reso-
nance is strongly pronounced.

By using formula (14), the following expression is de-
rived for a;(2):

ax(t) = (Eq - py) [0 "ot — F(ar,  (16)

with g, () being the inverse Fourier transform of g,(w).
Thus, the algorithm of analysis of time-dynamics of k-th
plasmon mode can be stated as follows. First, the eigen-
value problem (1) and (3) is solved and resonance values €,
of dielectric permittivity and surface electric charges
o (M) of the corresponding plasmon mode are found.
Next, by using o;(M), the dipole moment p;, is computed.
Then, g,(¢) is determined through the inverse Fourier trans-
form of g,(w) given by (14). Finally, formula (16) is
employed to evaluate the time evolution of a;(z) which
reveals the time-dynamics of k-th plasmon mode. It is
worthwhile to mention that the outlined computations
can be performed by using actual, experimentally mea-
sured e(w).

Expressions (14)—(16) can be useful for analytical cal-
culations as well. To demonstrate this, consider the steady
state case when f(¢) = sinw,t, where w, is the resonance
frequency defined by the formula (4). Then, f(w)=

i\/5l6(w — w;) — 8(w + ;)] and, by using (14) and
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FIG. 1. Dynamics of plasmon reso-
nances for Au nanorings (height 60 nm,

inner radius 55 nm, outer radius 65 nm)
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(15) as well as the inverse Fourier transform of d;(w), we
arrive at

!
(Ss)(t)——(EO k)[e(wk)eocoswkt—i-sinwkt} 17
€'(wy)
where superscript (ss) indicates the steady state of a; ().

In the case of strong plasmon resonances when
l€/(wy) — €9l > |€"(wy)l, the last formula is simplified
as follows:

)6’(wk) )
€"(wy)

As typical for most resonances, the steady state is shifted
by almost 90° in time with respect to the incident field
E, (7). It is also natural that the magnitude of the steady
state is controlled by the ratio of real and imaginary parts of
dielectric permittivity at the resonance frequency. It is also
revealing that the resonance magnitude depends on the
spatial orientation of the incident field E,(¢) with respect
to the dipole moment p; of plasmon resonance mode.

For off-resonance excitation f(f) = sinwgt, similar cal-
culations lead to the expression

(SS)(I) (Eq - pr)C(wy) cos(wot + @),

agcss)(t) _ _(EO “Pr COSwy!. (18)

19)

where

[€'(w) — & + [€"(wp)
[ex — €' (o) + [€"(wy) ]
Equation (20) is very instrumental for evaluations of the
width of plasmon resonances.

Next, we point out that simple analytical expressions for
g,(2) in (16) can be obtained for the Drude model of e(w):

Clwy) = (20)
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Indeed, by using (21) in (15), we obtain
~ wi+ 7y’
grlo)=——H"Y (22)
(iw — a))(iw — ay)
where ay =2+ i and a,=3—-iB, B= V4w 37
Now the inverse Fourier transform of (22) yields for t> 0
2 2 + 2
&) = _Aei Y e~ /2t singr. (23)
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i o o and (b) Au dispersion relation from [13].

Time [fs]

Formulas (16) and (23) can be used for analytical calcu-
lations of a,(f) for “rectangular” laser pulses E©f(r).
Indeed, in the case when

f([)z{o for t <0,

sinw;t for t = 0,
from (16), (23), and (24), we derive

1 2 ,
ak(t) = _(EQ . pk)wke_(yﬂ)’(; COSBt - Esinﬂt) + aﬁ:s)(t),

(25)

(24)

where
a;(ss)(t) = (E, - pk)(ﬂ coswyt — sina)kt>. (26)
Y

In the case of finite rectangular laser pulse f(r) =
sinwgt, T =t = 0, from (16) and (23) we derive for t > T

1
a(f) = —(Eq - pk)e—w)u—n[w ke—(y/zn(_ cos Bt
Y

2
- —sin,Bt) - (ﬂ coswt — sinwkt> }
B Y

It is instructive to compare the computational results
obtained by using the Drude model with those obtained
by using the experimentally measured dispersion relation

(27)
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FIG. 2. Dynamics of plasmon resonances for Au cylinders

(height 14 nm, diameter 126 nm) on a glass substrate (e, =

2.25) computed for the resonance wavelength 774 nm (see [2]).

The Au dispersion relation from [13] have been used in compu-
tations.

147401-3



PRL 98, 147401 (2007)

PHYSICAL REVIEW LETTERS

week ending
6 APRIL 2007

35
oy
30F ,. .‘
s

2 o5¢ ! \
0
M
£ 1
g 20
: ATt
° ¢ Q
% 15 ! \
3 ’ °
(<}
z $ U]

10F

‘ X
5 .
—%0 —46 —2‘0 0 20 4‘0 60
Delay time [fs]

FIG. 3. Envelop of the calculated third order ACF (filled
circles) superimpose on the measured third order ACF (solid
line) from [2] for Au cylinders on a glass substrate at wavelength
774 nm (maximum is normalized to 32).

€(w). This comparison is presented by Figs. 1(a) and 1(b)
for Au rings subject to finite rectangular laser pulses. These
figures suggest that the Drude model leads to quantitatively
similar results as the use of actual dispersion relation.
Formula (27) also implies that 1/y can be identified as
the decay (dephasing) time for the light intensity of plas-
mon modes. In accordance with the available data for 7y
(see [13,14]), this suggests that formula (27) predicts the
decay (dephasing) time for plasmon modes in gold (and
silver) nanoparticles in the range of 5-12 fs, which is

~
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FIG. 4. The calculated second-order ACF superimpose on the
envelop of measured second-order ACF from [6] for noncentro-
symmetric L-shape Au nanoparticles (height 21 nm, arm length
150 nm, arm width 75 nm) on a tantalum-dioxide substrate (e, =
4.33) at wavelength 838 nm (maximum is normalized to 8).

consistent with the experimental results reported in [1-
6,14].

Finally, we present the comparison between computa-
tional results based on the technique outlined above and
experimental results presented in [2,6]. By using Eqgs. (15)
and (16) we have computed the time-dynamics of the
774 nm resonance wavelength plasmon mode for Au cyl-
inders on glass substrate [2]. Figure 2 presents the time
variation of the incident electric field of the laser pulse
(bold line) used in experiments reported in [2] and the
corresponding computed time-dynamics of the average
(over nanoparticle volume) electric field of the plasmon
mode (thin line). The computed plasmon time-dynamics
was used to compute the third order autocorrelation func-
tion (ACF) which was compared with the experimentally
measured ACF from [2]. The results of this comparison are
presented in Fig. 3. Figure 4 presents the comparison
between our calculations of the second-order ACF for
noncentrosymmetric L-shape gold nanoparticles from [6]
and the experimentally measured in [6] second-order ACF.
Figures 3 and 4 suggest the agreement with experimental
data within 10%.
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