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We consider the statistics of the areas enclosed by domain boundaries (‘‘hulls’’) during the curvature-
driven coarsening dynamics of a two-dimensional nonconserved scalar field from a disordered initial state.
We show that the number of hulls per unit area that enclose an area greater than A has, for large time t, the
scaling form Nh�A; t� � 2c=�A� �t�, demonstrating the validity of dynamical scaling in this system,
where c � 1=8�

���
3
p

is a universal constant. Domain areas (regions of aligned spins) have a similar
distribution up to very large values of A=�t. Identical forms are obtained for coarsening from a critical
initial state, but with c replaced by c=2.
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Coarsening dynamics has attracted enormous interest
over the last 40 years. The classic scenario concerns a
system that in equilibrium exhibits a phase transition
from a disordered high-temperature phase to an ordered
low-temperature phase with a broken symmetry of the
high-temperature phase. The simplest example is, perhaps,
the Ising ferromagnet. When the system is cooled rapidly
through the transition temperature, domains of the two
ordered phases form and grow (‘‘coarsen’’) with time
under the influence of the interfacial surface tension, which
acts as a driving force for the domain growth [1–3].

While phase transitions provide the traditional arena for
coarsening dynamics, there are many other examples, in-
cluding soap froths [4], breath figures [5], granular media
[6], and interfacial fluctuations [7]. A common feature of
nearly all such coarsening systems is that they are well
described by a dynamical scaling phenomenology in which
there is a single characteristic length scale, R�t�, which
grows with time. If dynamical scaling holds, the domain
morphology is statistically the same at all times when all
lengths are measured in units of R�t�. The assumption of
dynamical scaling also makes possible the determination
of the length scale R�t� for a large class of coarsening
systems [3,8].

Despite the success of the scaling hypothesis in describ-
ing experimental and simulation data, its validity has only
been proved for very simple models, including the 1d
Glauber-Ising model [9] and the nonconservedO�n�model
in the limit n! 1 [10]. Another noteworthy exact result is
the Lifshitz-Slyozov derivation of the domain-size distri-
bution for a conserved scalar field in the limit where the
minority phase occupies a vanishingly small volume frac-
tion [11]. The only other exact results, to our knowledge,
for domain-size distributions in coarsening dynamics are
for the zero-temperature Glauber-Potts [12] and time-
dependent Ginzburg-Landau [13] models in 1d.

In this work we obtain some exact results for the coars-
ening dynamics of a nonconserved scalar field in 2d,
demonstrating, en passant, the validity of the scaling hy-

pothesis. To do this, we use a continuum model in which
the velocity, v, of each element of a domain boundary is
proportional to the local interfacial curvature, �:

 v � ���=2���; (1)

where � is a material constant with the dimensions of a
diffusion constant, and the factor 1=2� is for later conve-
nience. The Allen-Cahn Eq. (1) may be derived from the
zero-temperature time-dependent Ginzburg-Landau equa-
tion for the order-parameter field [2,3].

From Eq. (1), we can immediately deduce the time-
dependence of the area contained within any finite hull
(i.e., the interior of a domain boundary) by integrating the
velocity around the hull: dA=dt �

H
vdl � ���=2���H

�dl � ��, the final equality following from the
Gauss-Bonnet theorem. At any given time t, therefore,
hulls with original enclosed area smaller than �t will
have disappeared, and the enclosed areas of surviving hulls
will have decreased by �t. In other words, the entire
distribution of hull enclosed areas is advected uniformly
to the left at rate �. If Nh�A; t� is the number of hulls per
unit area of the system with enclosed-area greater than A, it
follows that

 Nh�A; t� � Nh�A� �t; 0�; 8 A> 0: (2)

To determine the initial condition we note that, shortly
after the quench from the high-temperature phase, the
system is at the critical point of continuum percolation.
Cardy and Ziff [14] have shown that the number of perco-
lation hulls, per unit area of the system, with area greater
than A has, for large A, the universal asymptotic form

 Np�A� � c=A; (3)

where c � 1=8�
���
3
p

is a universal constant. This result
provides the desired initial condition, Nh�A; 0� � 2Np�A�,
in Eq. (2), giving

 Nh�A; t� � 2c=�A� �t�; (4)
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where the factor 2 arises from fact that there are two types
of hull, corresponding to the two phases, while the Cardy-
Ziff result accounts only for clusters of occupied sites (and
not clusters of unoccupied sites). From this result one
immediately derives the hull-enclosed area density func-
tion, nh�A; t� � �@Nh�A; t�=@A, where nh�A; t�dA is the
number of hulls, per unit area of the system, having area in
the interval (A, A� dA):

 nh�A; t� � 2c=�A� �t�2: (5)

Equation (4) has the expected scaling form Nh�A; t� �
t�1f�A=t� corresponding to a system with characteristic
area proportional to t. This corresponds to characteristic
length scale R�t� � t1=2, which is the known result if scal-
ing is assumed [3]. Here, however, we do not assume
scaling—rather, it emerges from the calculation.
Furthermore, the conventional scaling phenomenology is
restricted to the ‘‘scaling limit’’: A! 1, t! 1 with A=t
fixed. Equation (4), by contrast, is valid whenever t is
sufficiently large, and does not (at least on the continuum)
require large A. This follows from the fact that, for large t,
the form (4) probes, for any A, the tail (i.e., the large-A
regime) of the Cardy-Ziff result (3), which is just the
regime in which the latter is valid.

It is, however, instructive to consider what can be de-
duced from scaling alone, augmented by the drift Eq. (2).
The general scaling form corresponding to a scale area t is
Nh�A; t� � t��f�A=t�, with arbitrary exponent �.
Consistency with (2) requires that Nh�A; t� depends on A
only through the combination A� �t, forcing Nh�A; t� /
�A� �t���. Finally,� � 1 is fixed by the requirement that
there be of order one hull per scale area, i.e. Nh�0; t� /
1=�t. Thus, for an internally consistent picture, one re-
quires Nh�A; 0� / A�1 for large A, and it is gratifying that
the Cardy-Ziff result not only has this form but also pro-
vides the exact value of the proportionality constant.

The argument above relies on the T � 0 Allen-Cahn
Eq. (1). Temperature fluctuations have a twofold effect.
On the one hand they generate equilibrium thermal do-
mains that are not related to the coarsening process. On the
other hand they roughen the domain walls thus opposing
the curvature-driven growth and slowing it down. Once
equilibrium thermal fluctuations are subtracted—hulls as-
sociated to the coarsening process are correctly identi-
fied—the full temperature dependence enters only
through the value of �, which sets the time scale. �
monotonically decreases from ��T � 0� to ��Tc� � 0.
For simplicity we focus here on zero working temperature.
In [15] we shall show the finite T effects.

To test the above result we carried out numerical simu-
lations on the 2d square-lattice Ising model (2dIM) with
periodic boundary conditions using a heat-bath algorithm
with random sequential updates. All data have been ob-
tained using systems with size L2 � 103 � 103 and 2�
103 runs using independent initial conditions. Domain
areas are identified with the Hoshen-Kopelman algorithm

while hull-enclosed ones are measured by performing a
directed walk along the interfaces, in analogy with the
algorithm in [16]. We mimic an instantaneous quench
from infinite temperature with a random initial condition
with spins pointing up or down with probability 1=2. The
data are plotted in log-log form to test the prediction
nh�A; t� / A

�2 for large A. The data are in remarkably
good agreement with the prediction (5)—shown as a con-
tinuous curve in Fig. 1—over the whole range of A and t.
The downward deviations from the scaling curve are due to
finite size effects. The latter are shown in more detail in the
inset where we display the t � 16 Monte Carlo (MC)
results for four linear sizes. Finite size effects appear
only when the weight of the distribution has fallen by
many orders of magnitude (7 for a system with L � 103)
and are thus quite irrelevant. The only fitting parameter is
�, which has the value � � 2:1 in Fig. 1. In the tail of the
probability distribution function the numerical error is
smaller than the size of the data points, the agreement
with the analytic prediction being nearly perfect. Even at
small values of A=t, where the lattice and continuous
descriptions are expected to differ most, the difference is
only a few percent (for a detailed analysis, see [15]). The
agreement between theory and data is all the more impres-
sive given that the curvature-driven growth underlying the
prediction (5) only holds in a statistical sense for the lattice
Ising model [17].

The mean hull-enclosed area, per unit area of the system,
hAi �

R
L2

0 dAAnh�A; t� � 2c ln�L2=�t�, diverges with the
system size. The fact that the total hull-enclosed area
exceeds L2 seems paradoxical until one notes that a given
point in space belongs to many hulls.
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FIG. 1 (color online). Number density of hulls per unit area for
the zero-temperature dynamics of the 2d Ising model evolving
from an infinite temperature initial condition. The full line is the
prediction (5) with c � 1=8�

���
3
p

and � � 2:1. Inset: finite size
effects at t � 16 MC results; four linear sizes of the sample are
used and indicated by the data points. The value of A=t at which
the data separate from the master curve grows very fast with L
with an exponent close to 2.
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It is clear that the evolution of the hull-enclosed-area
distribution follows the same ‘‘advection law’’ (2), with the
same value of �, for other initial conditions. Moreover,
Eq. (5) applies to any T0 > Tc equilibrium initial condition
asymptotically. Equilibrium initial conditions at different
T0 > Tc show only a different transient behavior; initial
states that are closer to Tc take longer to reach the asymp-
totic law (2) (see the inset in Fig. 2) [15].

An equilibrium state at the critical temperature, T0 �
Tc, is, as expected, different. This case has already been
addressed, for general space dimension, in the context of
coarsening from an initial state with long-ranged spatial
correlations [18]. It was argued that the characteristic scale
R�t� still grows as t1=2, since the growth is curvature driven,
but the space and time correlation functions are modified if
the spatial correlations in the initial state are sufficiently

long ranged [18]. The statistics of hull and domain areas,
however, were not discussed. In place of the continuum
percolation statistics that characterize the initial state
shortly after a quench from high temperature, the initial
state for a quench from Tc is characterized by the statistics
of Ising cluster hulls at the critical point. The area distri-
bution of the hulls of these clusters has been studied by
Cardy and Ziff [14]. The result has a form identical to
Eq. (3), but with c replaced by c=2. We predict, therefore,
that our results for the hull-enclosed-area distributions can
be generalized to this case by simply making the replace-
ment c! c=2 everywhere, and keeping the value of �
unchanged. In Fig. 2 we compare this prediction to the
number density of hull-enclosed areas in the 2dIM evolv-
ing at T � 0 from a critical initial condition, once more
obtaining excellent agreement.

Also interesting is the distribution of domain areas,
nd�A; t�, which are the areas of regions of aligned spins
[19]. Domains are obtained from hulls by removing any
interior hulls. The domain area distribution nd�A; t� (num-
ber density of domains with area A, per unit area) of the
2dIM evolving at zero temperature after a quench from
infinite temperature is shown in Fig. 3. The downward
deviations from the scaling curve in the main panel as
well as the bumps on the tail are finite-size effects due to
the percolating clusters and, as for the hull-enclosed areas
(see Fig. 1), are not very important.

Remarkably, the domain area distribution, nd, seems to
be almost identical to the hull-enclosed area distribution
nh, i.e., nd � 2cd=�A� �dt�� with a prefactor 2cd, a pa-
rameter �d and an exponent � taking approximately the
same values as for the hull-enclosed areas. An argument
that treats interior domain walls in a mean-field approxi-
mation and uses the exact result for nh derived above,
allows one to derive [15]

 nd�A; t� � 2cd��d�t� t0�	��2=�A� �d�t� t0�	�; (6)

with �d � ��O�c�, cd � c�O�c2�, and �� 2�O�c�
for infinite temperature initial conditions and, cd ! cd=2
for initial conditions equilibrated at T0 � Tc. t0 is such that
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FIG. 2 (color online). Number density of hulls per unit area for
the zero-temperature 2dIM evolving from critical initial con-
ditions. We obtained the initial states after running 103

Swendsen-Wang algorithm steps. The full (red) line represents
(5) with c! c=2 and � � 2:1. The dashed (blue) line is (5) with
c. Inset: comparison between the hull-enclosed area distribution
at t � 128 MC results for equilibrated initial conditions at T0 �
2:5 and T0 ! 1.
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FIG. 3 (color online). Number density of domains per unit area for the zero-temperature 2dIM evolving from T0 ! 1 (left panel)
and T0 � Tc (right panel) initial conditions. In the main panels the percolating domains have been extracted from the analysis while in
the insets we show the same data including the percolating clusters. We obtained the initial states after running 103 Swendsen-Wang
algorithm steps. The full (red) line represents (5) with c � 1=8�
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(left) and c! c=2 (right), and � � 2:1 in both cases. The dotted
(blue) lines have slopes �2:03 (left) and �2:05 (right).
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�dt0 � a2, with a a microscopic length scale, and sets the
time scale. The constant cd and � characterize the initial
distribution of domain areas, nd�A; 0� � 2cda

��2A��. The
exponent � is known for the 2dIM critical geometrical
clusters, � � 379=187 
 2:03 [20], and for cluster masses
in 2d percolation, � � 187=91 
 2:05 [21]; the constant
cd has not been computed analytically. � > 2 allows one to
satisfy the sum rule establishing that the total domain area,
per unit area of the system, must be equal to unity since
every spin belongs to one, and only one, domain.
Unfortunately, it is hard to distinguish a power law with
� � 2 or 2.03–2.05 from our numerical data: both expo-
nents describe the power-law tail equally well, as shown in
Fig. 3, with a (blue) dotted line. It is, however, possible to
put to the numerical test the value of the prefactor cd (or
2cd) and �d. We shall present this analysis elsewhere [15].

Interestingly, similar results are obtained for the 2d
random ferromagnet, at least when activation is not too
important. In Fig. 4 we display data obtained at T � 0:4
after a quench from T0 ! 1. This low but finite working
temperature is enough to avoid the complete pinning of
domain walls by quenched disorder. Good scaling with the
typical domain area R2�t� is obtained for A=R2�t� � 10�1

and the master curve resembles strongly the one found in
the pure Ising case also included in Fig. 4.

In summary, we obtained exact results for the statistics
of hull-enclosed areas during the curvature-driven phase-
ordering dynamics of 2d systems. Notably, these results
include a proof of the scaling hypothesis for these systems
and are strongly supported by simulations of Ising systems,
suggesting a strong degree of universality. The domain area
distribution satisfies a very similar law.
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27, 175 (1994).
[14] J. Cardy and R. M. Ziff, J. Stat. Phys. 110, 1 (2003).
[15] A. Sicilia, J. J. Arenzon, A. J. Bray, and L. F. Cugliandolo

(to be published).
[16] T. Grossman and A. Aharony, J. Phys. A 19, L745 (1986).
[17] A. D. Rutenberg, Phys. Rev. E 54, R2181 (1996), has

shown that lattice anisotropy also induces a very small
anisotropy in the coarsening structure.

[18] A. J. Bray, K. Humayun, and T. J. Newman, Phys. Rev. B
43, 3699 (1991).

[19] See T. B. Liverpool, Physica (Amsterdam) A224, 589
(1996); M. Fialkowski and R. Holyst, Phys. Rev. E 66,
046121 (2002), for earlier studies of this problem.

[20] A. L. Stella and C. Vanderzande, Phys. Rev. Lett. 62, 1067
(1989); W. Janke and A. M. J. Schakel, Phys. Rev. E 71,
036703 (2005).

[21] D. Stauffer and A. Aharony, Introduction to Percolation
Theory (Taylor & Francis, London, 1994), 2nd ed.

 

10-10

10-8

10-6

10-4

10-2

100

102

10-2 10-1 100 101 102 103 104

R
4 (t

) 
n h

(A
,t)

A/R2(t)

10-9

10-6

10-3

100

10-210-1100101102103104

R
4 (t

) 
n d

(A
,t)

101

102

101 102

R
(ε

,t)

t

t1/2

FIG. 4 (color online). Number density of hull-enclosed and
domain (lower inset) areas per unit area for the 2d random
ferromagnetic Ising model with a uniform distribution of ex-
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The system evolves at T � 0:4 after a quench from T0 ! 1.
Upper inset: the evolution of R��; t� used to scale the pdfs and its
comparison to the pure R�0; t� / t1=2 law.
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