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Laser action in active random media in the weak scattering regime far from Anderson localization is
investigated by coupling Maxwell’s equations with the rate equations of a four-level atomic system. We
report systematic lasing action with resonant feedback and show that the lasing modes mostly consist of
traveling waves spatially extended over the whole system. Next we address the question of the origin of
the feedback mechanism in such a system where no disorder-induced long-lived resonances are available,
and present strong evidence that they correspond to the quasimodes of the passive system. This in turn
provides an original way to access the spatial distribution of the quasimodes of a non-Hermitian system.
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Lasing with intensity feedback and lasing with field
feedback are the two acknowledged types of random laser
emission [1]. As first predicted by Lethokhov [2], lasing
with intensity (nonresonant) feedback (LIF) is based on
photon diffusion with energy feedback only. In a disor-
dered open system, the distinct effect of the scatterers is to
increase the length of the light paths before photons escape
from the system. Hence, amplification is improved by
randomness as compared to an homogeneous active me-
dium. Like conventional amplified spontaneous emission
(ASE), there is a threshold above which the light emission
increases rapidly with the pumping rate and the linewidth
narrows abruptly down to values of a few nanometers.
Lasing with field (resonant) feedback (LFF) is similar to
lasing in a conventional cavity. The feedback due to ran-
domly distributed scatterers leads to the coherent oscilla-
tion of a radiation mode where not only amplitude but also
phase conditions are satisfied [3]. These modes show
themselves plainly above some threshold of the pumping
rate like discrete spectral lines as narrow as one-tenth of a
nanometer, which appear on top of the broad fluorescence
band.

Historically, LIF was first observed in moderately scat-
tering systems in the diffusive regime [1]. More recently,
LFF has been observed in semiconductor powders, con-
jugated polymer films, and dye-infiltrated opals [1]. These
last experimental observations have been tentatively ex-
plained in terms of confined modes such as localized
modes [4]. Indeed, random lasing with resonant feedback
is naturally expected if light is localized [5,6]. However,
among the numerous experimental systems that have ex-
hibited LFF, many of them seem to be too far from the
Anderson localization regime to be able to support con-
fined modes (see, for instance, [7]). Hence, the nature of
the lasing modes in such systems is an open question.
Several mechanisms have been proposed to explain LFF
in diffusive random systems in terms of anomalously lo-
calized modes [8], or the absorption-induced localization
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of lasing modes in the local pump region [9], or the
amplification of spontaneous emission along very long
paths [7]. Although they are possibly achieved in some
specific situations, such mechanisms cannot explain the
whole set of experimental observations of LFF.

In this Letter, we study active random media in the
weak-scattering regime. We present numerical simulations
which demonstrate lasing action with resonant feedback,
despite the field feedback is very weak in the systems we
consider. Lasing action is observed for any weakly scatter-
ing system, independently of its parameters and disorder
realization, inasmuch as the pumping rate is large enough.
In contrast to the lasing modes in the localized regime, here
the lasing modes mostly consist of traveling waves spa-
tially extended over the whole system. We provide strong
evidence that the first lasing modes are the short-lived
quasimodes of the passive system. This result suggests an
original method to obtain the spatial distribution of elec-
tromagnetic quasimodes of an open system even in the
presence of strong leakage.

We consider a two-dimensional (2D) system of size
L? =5X5 um? made of circular particles with radius
r = 60 nm, optical index n, = 1.25, and surface filling
fraction ® = 40%, which are randomly distributed in a
background medium of index n; = 1 (inset of Fig. 1). This
system can be considered as a random collection of cylin-
ders oriented along the z axis. The background medium is
chosen as the active part of the system and is modeled as a
four-level atomic system. We describe the time evolution
of the atomic populations by rate equations and the time
evolution of the field by the Maxwell’s equations including
a polarization term due to the atomic population inversion.
We have used perfectly matched layer (PML) absorbing
conditions in order to model an open system [10]. The
corresponding equations are identical to those that have
been used in [6]. The value n, = 1.25 is the only but
crucial difference with the 2D system studied in [6] where
the particle optical index n, was chosen equal to 2. It was
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FIG. 1 (color online). For the spatial arrangement of the scat-
terers shown in the inset: (a) Dynamics of the field amplitude.
(b) Emission spectrum in the steady state regime with one mode
(thick line) and with several modes at higher pumping rate (thin
line) compared to the gain profile (dotted line). (c) Spatial
distribution of the field amplitude.

shown in [6] that for n, = 2, passive systems exhibit high-
quality localized modes. When gain is added to such
systems, lasing modes are found identical to the modes
of the passive system demonstrating that the modes of a
random laser in the Anderson localization regime behave
as the cavity modes of a conventional laser. For n, = 1.25,
we have investigated several systems corresponding to
different sizes and different realizations of the disorder.
The mean free path has been estimated to be not much
smaller than L. This weakly scattering regime, which is
intermediate between ballistic and diffusive, is thus far
from Anderson localization. In this regime that we shall
simply call diffusive, all the energy initially put inside the
system flows out rapidly through the open boundaries and
no mode survives long enough to be spectrally identified
from the impulse response.

Despite this weakly scattering regime and the absence of
identifiable resonances in these random systems, lasing
action with resonant feedback is demonstrated. The pump-
ing rate is adjusted just above threshold. After an expo-
nential growth of the intensity, strong relaxation
oscillations which are characteristic of a damped laser
cavity are observed [Fig. 1(a)]. The transient dynamics is
very similar to what was observed in localized random
active media, except that the pump level can be several
orders of magnitude higher in weakly scattering media in
order to achieve single-mode lasing. Eventually, the steady
state is reached, associated with a sharp single peak in the
emission spectrum [thick line in Fig. 1(b)] with a linewidth
only limited by the finite time record length of the simu-
lation. At higher pumping, additional lasing peaks appear
[thin line in Fig. 1(b)]. Like in the localized case [6], the
dynamics and the discrete lasing frequencies are hallmarks
of lasing action with resonant feedback. However, the
lasing modes in both regimes present differences. First,
the lasing mode in the localized system is spatially con-
fined [e.g., Fig. (2¢) in [6]] following closely the distribu-
tion of a localized mode, while in the diffusive sample, the
lasing mode is distributed over the whole system, as shown
in Fig. 1(c). Next, the lasing mode is a standing wave in the
localized regime while it has a large traveling component
[11] in the diffusive regime; i.e., the field is “‘complex”
[12]. A general expression for the electric field of the single
lasing mode is, E(7, 1) = A(F) cos[wt + ¢(F)], where A(F),
and ¢(7) are, respectively, the amplitude and the phase of
the field. For the localized lasing mode, ¢(7) takes only
two values, ¢(F) = ¢ and ¢ + 7, where ¢ is arbitrary,
which means that the mode is a standing wave. This is
illustrated in Fig. 2(a) by the probability distribution of the
phase, ¢(7), which shows two peaks at ¢, and ¢, + 7 in
the localized regime. In the diffusive regime, however, the
phase spreads over the full range [0, 27] [13]; i.e., the
traveling wave component dominates.

It is convenient to introduce the spatial correlation func-
tion Cg(to, t) = [[ d*FE(F, 1)E(F, 1) of the normalized field
E(F,1)=EF /[ [[ d*FE*(F, 1)]'/2. For a purely standing
wave, the normalized field map (7, 1), should not change
although the field E(7, t) oscillates in time. Therefore, the
correlation function versus time is expected to be a square
wave function jumping every half-period between +1 (in-
phase) and —1 (180° out of phase). This is what is ob-
served for lasing modes in the localized regime [Fig. 2(b)].
Instead, in the diffusive regime, the correlation function
exhibits a sinuslike oscillation between +1 and —1. This
indicates that the normalized field map is continuously
changing over a period and is recovered every half-period
with opposite sign [14,15].

The question remains of the origin of the resonant feed-
back mechanism in the diffusive regime. To answer this
question, it would have been natural to compare the lasing
modes with the modes of the passive cavity, as was done in
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FIG. 2. (a) Probability distribution of the phase and (b) spatial

correlation function of the field Cg(t, t) for a lasing mode in the
localized (dashed line) and in the diffusive (full line) regime.

the localized regime, where the eigenmodes of the passive
system were identified as the resonant structures of the
lasing process. There, the eigenfrequencies of long-lived
modes of the passive system were clearly identified by well
separated peaks in the spectrum obtained by Fourier trans-
forming the impulse response. The spatial distribution of a
mode was then obtained using a monochromatic excitation
at its corresponding eigenfrequency [6]. In contrast with
localized states, the short-lived modes of a weakly scatter-
ing system do not yield well-defined resonances in the
impulse spectrum.

Although we lack a direct comparison between the
passive and lasing modes, we demonstrate indirectly that
the lasing modes are indeed built on the modes of the
passive system. For this purpose, the pumping is turned
off at time 1, after the lasing mode has been established and
we let the field evolve by itself. Because of leakage, the
field decays rapidly. The decay of the total energy of the
system as a function of time is shown as the dashed line in
Fig. 3(a). Damping is observed over 6 orders of magnitude
and the corresponding quality factor estimated over a time
interval of 0.07 psis Q = 30, as compared to Q of the order
of 10* in [6]. However, we found that its spatial distribution
is reproduced identically every period, as expected for a
quasimode of a non-Hermitian system. This is demon-
strated in Fig. 3(a), which shows the spatial correlation
function, C¢(t, t), of the field at time ¢ with field at time .
Indeed, although the energy inside the system has de-
creased by several orders of magnitude, the oscillation
amplitude of the correlation function remains close to 1,
as long as the field amplitude has not reached the noise
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FIG. 3 (color online). Spatial correlation function of the field
Ce(ty, t) (full line) and total energy of the system (dashed line) as
a function of time when excitation of the system is turned off.
The initial field is (a) the laser field and (b) the field created by an
arbitrary set of monochromatic sources at the laser frequency.

level. This suggests that a single short-lived resonant mode
of the passive system has been excited. The field reads
E(F, t) = A(F) cos|wt + ¢ (F)]exp(—T1), with T the leak-
age rate, describing a ‘“‘natural mode” or ‘“‘quasimode’,
which generalizes the concept of mode to leaky systems
[16]. This quasimode has the same oscillating pattern and
frequency as the original lasing mode, supporting the
hypothesis that lasing occurs on a mode of the passive
system, even for weakly scattering systems, the only dif-
ference being its fast decay.

To validate further this result, the system in absence of
gain is excited in the scattering region by several sources
oscillating at the frequency of the laser. First, the amplitude
and the phase of the sources are chosen constant. After the
steady state is reached, the sources are turned off. We
observe the energy decay at the same rate as in the previous
experiment, corresponding to the diffusive escape time.
However, decorrelation of the spatial distribution of the
field occurs on a much shorter time scale, as shown in
Fig. 3(b).

Next, sources S(7, t) are placed over the whole system
and adjusted in such a way that their amplitudes and
relative phases reproduce the field distribution of the lasing
mode, ie., S(#1) = A(F)cos|wt + ¢(¥)]. After the
sources are turned off, the field decays and the result of
Fig. 3(a) is recovered: the oscillations amplitude of the
correlation function stays close to 1 as long as the ampli-
tude remains above the noise level. This demonstrates that
the field distribution created by this set of sources is differ-
ent from the field distribution created by an arbitrary set of
sources at the same frequency. Only the former describes a
quasimode with E(7, 1) = A(F) cos[wt + ¢ ()] exp(—I'7).
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Most remarkably, we were able to exhibit the same
quasimode using a uniform excitation of constant ampli-
tude A, with only the phase spatial distribution of the
lasing mode, i.e., S(7, r) = Ay cos[wt + ¢(¥)]. An interfer-
ence pattern builds up, which reproduces the field distri-
bution of the quasimode. In contrast, using a source
S(7, t) = A(F) cos[wt + ¢y] with only the amplitude dis-
tribution of the lasing mode does not reproduce the field
distribution of the quasimode. This result emphasizes the
crucial role of the phase as expected if the laser mode is a
resonance of the passive system.

Identification of quasimodes of an open diffusive system
in terms of their complex eigenvalues [17] and their spatial
field distribution is usually a challenging task. Here, the
lasing modes provide an original way through which one
can identify the modes of leaky systems.

To conclude, it is noteworthy to report that random
lasing with resonant feedback, demonstrated here for one
particular system, has been observed in a large range of
different systems. We have considered a variety of scatter-
ers configurations, varied the sample dimensions and ex-
plored a large range of index contrasts. We observed lasing
action for An as low as 0.05, in a regime of very weak
scattering, with a mean free path larger than the size of the
system. Lasing is phase-coherent and is therefore different
from the amplification of noise described by Mujumdar
et al. [7]. Besides, the lasing modes are reproducible and
independent of the initial noise used to initiate the laser
oscillation buildup. Next, these lasing modes have a small
quality factor and spread over the whole system. This
precludes a scenario based on prelocalized modes [8].
Our results suggest a completely different mechanism
responsible for the coherent feedback. A single leaky
mode of the passive system is selected by the gain and
serves as the first lasing mode. This result is in favor of
recent theoretical predictions [18], stating that even in the
regime of strong spectral overlap, the lasing modes are the
individual quasimodes of passive systems described by a
non-Hermitian Hamiltonian. We also checked systemati-
cally that the modes are not modified significantly by the
nonlinear effects due to the gain [19]. An interesting output
of these results is to exhibit quasimodes via the knowledge
of the spatial distribution of the lasing mode, in a system
where spectral selection is impossible because of strong
modal overlap. This opens up the possibility of studying
the biorthogonal eigenmodes in the transition from closed
to fully open scattering systems [20,21]. We have focused
on the single-mode lasing regime. Multimode lasing in
such leaky systems will be the subject of future investiga-
tion. Finally, this work has been restricted to homogeneous

distribution of the gain over the whole system. Local or
heterogeneous pumping of a weak scattering system is
currently under investigation [22].
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