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The lateral Casimir force is employed to propose a design for a potentially wear-proof rack and pinion
with no contact, which can be miniaturized to the nanoscale. The robustness of the design is studied by
exploring the relation between the pinion velocity and the rack velocity in the different domains of the
parameter space. The effects of friction and added external load are also examined. It is shown that the
device can hold up extremely high velocities, unlike what the general perception of the Casimir force as a
weak interaction might suggest.
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With the emergence of the new generation of miniatur-
ized mechanical devices such as micro- and nanoelectro-
mechanical systems (NEMS), we have been witnessing a
paradigm change in the technical problems involved in
making machines and the strategies needed to resolve
them. In particular, tribological interactions, i.e., friction,
adhesion, and wear, appear to pose new challenges at small
length scales [1]. The abundance of surfaces in contact in
small devices and high friction are problematic, and the
traditional use of lubricants does not work because they
become excessively viscous when made into molecular
layers [2]. Devices with sliding surfaces in contact are
known to wear out too rapidly [3], and it seems that
strategies to minimize contact between the surfaces are
needed to help make them more durable. The presence of
short-ranged attractive dispersion or Casimir forces can
cause tiny elements in small devices to stick together and
bring the devices to stop [4], and a line of ongoing active
research is focused on devising novel techniques to avoid
such effects [5,6]. In light of these technical difficulties, it
seems desirable to have novel designs for mechanical
devices that can operate without physical contact between
their parts.

As a key interaction at nanoscale, Casimir force can be
harnessed and used in small devices, as demonstrated by
Capasso and collaborators who developed an actuator
powered by the normal Casimir force between a flat plate
and a sphere [7,8]. To avoid the limited applicability that
the parallel-plate geometry might offer, one can make the
two surfaces corrugated and take advantage of a lateral
component to the Casimir force, as has been recently
proposed [9] and indeed verified experimentally [10].
The lateral Casimir force between corrugated surfaces,
provides a possibility for frictionless transduction of lateral
forces in nanomechanical devices without any physical
contact between them. The coupling between two surfaces
via the quantum vacuum is realized by a term proportional
to the sinus of the phase difference between them and is a
macroscopic manifestation of quantum coherence, which
is reminiscent of the Josephson coupling between super-

conductors [9,11]. Because the coupling is nonlinear, its
mechanical response could involve oscillatory and un-
stable behavior similar to that observed in Ref. [8] for
the case of a device powered by the normal Casimir force.

Here we make use of the lateral Casimir force to design a
nanoscale rack and pinion without intermeshing, as shown
in Fig. 1(a). Our system consists of a corrugated plate
(rack) and a corrugated cylinder (pinion) that are kept at
a distance from each other. The pinion could be subject to
external load [see Fig. 1(b)], and could experience friction
when rotating around its axis. For uniform motion of the
rack with a velocity VR, we find that the ‘‘contact’’ pinion
velocity VP [see Fig. 1(a)] is locked in to the rack velocity
for sufficiently small values of VR, and that there is a
threshold rack velocity at which the pinion undergoes a
skipping transition where the pinion can no longer hold the
cogs in perfect registry with the rack. In the skipping
regime, we find that the average pinion velocity can be
both positive and negative (with VR > 0) depending on the
initial phase mismatch between the corrugations. The ef-
fects of the external load and friction are considered and
the regions in the parameter space where the pinion can do
work against the load are determined. These studies could
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FIG. 1 (color online). (a) The rack and pinion with no contact.
(b) The schematics of the rack and pinion with an external load
W. (c) Two corrugated plates with lateral shift x� y. The
equilibrium position is at x � y.
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help us examine the feasibility and efficiency of such a
design as a mechanical transducer.

When two sinusoidally modulated plates with identical
wavelengths of � are shifted with respect to each other by a
length x� y [see Fig. 1(c)], the lower plate experiences the
lateral Casimir force Flateral � �F sin�2�� �x� y�� [9,11]
where the amplitude F depends on the mean separation
of the plates and the amplitude of corrugations [10,12,13].
The lateral Casimir force introduces a net torque on the
pinion, which plays the central role in the equation of
motion for the coordinate x � R� [Fig. 1(b)]. The equation
of motion reads

 

I
R

d2x

dt2
� �RF sin

�
2�
�
�x� y�

�
�
�
R
dx
dt
� RW; (1)

where I is the moment of inertia of the pinion about its
major axis, � is the rotational friction coefficient, and W is
an external load against which the pinion should do work.

We focus on the uniform motion of the rack with a
velocity VR, i.e., y � VRt, although similar analyses can
be performed for other types of motion such as vibrating
[14] or undulating [15] racks, in both of which cases the
motion can be rectified. The nonlinear Eq. (1) can be better
studied in the phase plane �u � 2��x� y�=�; v � _u�,
where it reads _u � v, _v � � sinu� ��v� v0� �W=F.
In the above equations, we have measured the time in units

of T �
��������������������������
I�=�2�FR2�

p
, and have defined the dimensionless

parameter � � T�=I, which is a measure of the relative
importance of friction in the system. The parameter v0 �
_u0 � 2�� _x0 � VRT�=� is the initial value for v. A key

velocity scale is given by

 VS �
�

2�T
�

�
F�R2

2�I

�
1=2
; (2)

which corresponds to the velocity at which the kinetic
energy of the rotating pinion is of the order of the work
done by the lateral Casimir force upon displacement by one
tooth. As we will see below, the quantity F� can be
considered as the effective ‘‘bond strength’’ of the coupling
between the pinion and rack, so that a ‘‘bound state’’
between them can only tolerate pinion kinetic energies of
this order or magnitude, which means that Eq. (2) gives the
skipping velocity. For simplicity, we only consider the case
of pinions that are initially at rest throughout this Letter
( _x0 � 0), which means v0 � �VR=VS, although the for-
mulation can be readily used to study other initial condi-
tions as well.

No dissipation.—In the absence of dissipation and load,
Eq. (1) is identical to the celebrated nonlinear plane pen-
dulum problem [16]. It is well known that for this system,
the ‘‘energy’’ h � 1

2v
2 � 1� cosu � 1

2 �
VR
VS
�2 � 1� cosu0,

is a constant of motion, and there are two families of
periodic orbits, corresponding to rotations (h > 2) and
oscillations (h < 2). For 0< h< 2, the system is oscilla-
tory with a period of 4K�

��������
h=2

p
�, where K�m� �

R�=2
0 d��1�m2sin2���1=2 is the complete elliptic integral

of the first kind [17]. In this case juj 	 jcos�1�1� h�j 	
�, which means that the distance jx� yj between the teeth
of the rack and pinion does not exceed �=2. Thus the
pinion is locked-in with the rack and will have a forward
motion with superimposed oscillations (jerks). In the case
of h > 2, the system is not locked-in any more and depend-
ing on the initial conditions it can have different behaviors.

The value of h, which determines the behavior of the
system, depends on VR and u0. For VR < VS

���������������������������
2�1� cosu0�

p
the rack and pinion are geared up and we have VP � VR for
the jerk-averaged pinion velocity. Higher rack velocities
VR > VS

���������������������������
2�1� cosu0�

p
cause the system to go to the ‘‘ro-

tation’’ phase of the equivalent pendulum problem, which
means that the pinion skips teeth with respect to the rack,
but will still have a net average velocity that can be
calculated as

 VP � VR �
�VS��������

2=h
p

K�
��������
2=h

p
�
: (3)

In Fig. 2(a), the pinion velocity is plotted as a function of
the rack velocity for two values of the initial phase mis-
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FIG. 2 (color online). (a) Pinion velocity versus rack velocity
in the absence of dissipation and external load. (b) Domains of
positive and negative pinion velocities as well as the phase
boundary for the skipping transition. Only half of the plot is
shown due to u0 ! �u0 symmetry in this case. (c) Phase
boundary for the skipping transition, in the absence of dissipa-
tion, as a function of the external load. (d) Phase boundary for
the skipping transition, in the presence of weak dissipation, as a
function of the external load for

�������������
FD=F

p
� 0:05. (e) Pinion

velocity versus rack velocity in the presence of weak dissipation
and external load. (f) Force-velocity response of the rack and
pinion could be of two general forms depending on the value of
the rack velocity.
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match. The pinion velocity rises linearly with the rack
velocity initially and then drops abruptly at the skipping
transition. At large rack velocities VR 
 VS, the pinion
velocity has an asymptotic form VP � cosu0V2

S=VR � � � � ,
which shows that it vanishes at infinity, and that the decay
can be both from below (for u0 >�=2) and above (for
u0 <�=2). An intriguing feature here is the possibility of
dropping into negative pinion velocities—the reverse
gear—after the skipping transition, as Fig. 2(a) shows.
Figure 2(b) delineates the different domains of phase
lock-in, forward motion, and reverse motion, in the space
of the rack velocity and the phase mismatch. One can see
that for 0< u0 <�=2 the average velocity is always posi-
tive, while for �=2< u0 <� the pinion velocity can be
switched from positive to negative by increasing VR=VS.
This can be achieved by either speeding up the rack or
decreasing the skipping velocity by increasing the separa-
tion between the rack and pinion (see below).

The effect of external load.—In the absence of dissipa-
tion, Eq. (1) has h0 � v2=2� 1� cosu�Wu=F as the
constant of motion. Two classes of motion are separated

by the saddle-loop of energy h0s � 1�
�������������������������
1� �W=F�2

p
�

��� sin�1�W=F���W=F�, leading to rotations for h0 > h0s
and oscillations for h0 < h0s, in the equivalent pendulum
problem. Figure 2(c) shows the domains for two different
regimes as well as the boundary for the skipping transition
as a function of the rack velocity and the initial phase
mismatch. As the load is increased, the two fixed points
approach each other thereby narrowing down the locked-in
region, until atW � F it disappears when they fully merge.
Therefore, W <F is a necessary condition to have positive
rack velocities.

Weak dissipation.—The dynamical system described by
Eq. (1) is not integrable in the presence of the dissipation
term, as energy is not conserved. If the dissipation is weak,
such that �VR=R2 �W <F, we can use the Melnikov
method [16,18] to study the perturbed phase portrait of
the system. In this regime, the force scale FD �

�2�
2�IR2

seems to play an important role. (Note that �VS=R2 �����������
FFD
p

.)
Similar to the dissipation-free case, the system develops

the two classes of commensurate and incommensurate
motion transduction separated by a skipping transition
boundary. Figure 2(d) shows an example of this phase
diagram that has been calculated numerically, for different
values of the external load. The phase boundary consists of
horizontal (u0-independent) parts that are met by a bell-
shaped central part. In the part that does not depend on u0,
we find that for �VR=R2 < 4

�

����������
FFD
p

�W the system is in
the locked-in phase and we have VP � VR. As the rack
velocity is increased above this limit, the system undergoes
a skipping transition. The pinion velocity for �VR=R2 >
4
�

����������
FFD
p

�W can be found from Eq. (3), with a value h �

hm that is a solution to this equation VR �WR
2=� �

4
�VS

�����������
hm=2

p
E�

�����������
2=hm

p
� with E�m� �

R�=2
0 d�

��������������������������
1�m2sin2�
p

being the complete elliptic integral of the second kind [17].
Figure 2(e) shows the pinion velocity as a function of the
rack velocity for different values of the external load. The
general feature of a drastic drop in the pinion velocity after
the skipping transition is observed, and the asymptotic
behavior VP � �WR2=� � 1

2V
4
S=V

3
R � � � � , at large rack

velocities shows a complete decoupling in the system at
infinitely large VR. The response of the system in the bell-
shaped region of the phase diagram of Fig. 2(d) leads to
similar results and can be obtained numerically. Note that
the Melnikov approximation breaks down for large rack
velocities and we need a complementary approach to ex-
amine the behavior of the system in that limit (see below).

The force-velocity response of the system in the
u0-independent region can also be extracted from this
result. Figure 2(f) shows the pinion velocity as a function
the external load for two values of the rack velocity. For
VR <

4
�VS, the pinion velocity is independent of the load

for W < 4
�

����������
FFD
p

� �VR=R2, and drops drastically after
the onset of skipping, whereas the decrease upon introduc-
tion of load starts from the beginning when VR >

4
�VS. One

can identify the load at which the pinion velocity vanishes
as the stall force.

Strong dissipation.—The Melnikov method fails if
�VR=R

2 �W * F, but in this limit we can proceed by
neglecting the acceleration term _v � �u in Eq. (1). This
allows us to solve the equation in closed form, which yields

u�t� � 2tan�1�� F
�VR=R2�W

� �
�����������������������������������
1 � � F

�VR=R2�W
�2

q
tan��t� ��,

where � � �=
�����������������������������������������������������������
�VR �WR

2=��2 � �FR2=��2
p

. The explicit
expression for u can be used to calculate the time-averaged

pinion velocity VP�VR�
���������������������������������������������������������
�VR�WR2=��2��FR2=��2

p
,

which produces very similar curves to those plotted in
Fig. 2(e) above the skipping transition (using the
Melnikov method). The stall force (load) in this limit can

be found as Ws � F�
�����������������������������������
1� ��VR=FR2�2

p
� ��VR=FR2��.

To make a stronger link to the experiments, we need to
quantify the amplitude of the lateral Casimir force F. For a
cylinder of radiusR located at a (nearest) distanceH from a
plate [see Fig. 1(b)], the Casimir interaction can be calcu-
lated from the corresponding interaction between two par-
allel plates, using the proximity force approximation (PFA)
[19]. For the normal Casimir force between perfect metals,
it has been recently shown that this approximation works
surprisingly well forH & R [20]. Using PFA for the lateral
Casimir force between a pinion of length L and corrugation
amplitude a1 and a rack of corrugation amplitude a2 with
a1, a2 � H, we find

 F �
�
7�4

���
2
p

3072

�
@ca1a2LR1=2

�H9=2
�
�
H
�

�
; (4)

to the leading order, where � � 3072
7�3

R
1
1

dt
t5
������
t�1
p J�H� t�with J

being the (‘‘Josephson-’’) coupling function presented in
Ref. [12]. The inset of Fig. 3 shows the dependence of � on
H=� for perfect metals and a comparison to pairwise

PRL 98, 140801 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
6 APRIL 2007

140801-3



summation approximation, with the dashed line showing
an empirical approximate formula �e � 1=cosh4=9�12�����

35
p H

��

which could be useful for practical purposes. Using this
result we find

 VS �
�
7�2

���
2
p

3072

�
1=2
�
@c

�H4

�
1=2
�
a1a2

H2

�
1=2
�
H
R

�
3=4
�1=2; (5)

where � is the mass density of the pinion. This result shows
a strong power law behavior at small values ofH, followed
by an exponential decay at large H whose length scale is
set by �. Figure 3 shows the skipping velocity as a function
of the gap size, for different values of the radius and
wavelength. The typical values for VS, which correspond
to velocities that the system could transfer robustly, are
remarkably high: translated into angular velocity they are
in the kHz region. The strong dependence of the skipping
velocity on the gap size can be used to explore the parame-
ter space and change the behavior of the system. For
example, one can reduce VS—move in the vertical direc-
tion in the phase diagram of Fig. 2(b)—by increasing H,
and thus switch the system from the locked-in phase to a
reverse gear, at constant rack velocity. In other words,
changing the separation provides a continuous analogue
of the clutch-gear system. The calculations presented here
have been based on the assumption of perfect metallic
boundaries, and one expects corrections for gap sizes
smaller than the plasma wavelength of the metals [13].

The value of the friction coefficient � is also instrumen-
tal in determining the behavior of the system. While this

quantity is highly system dependent in general, it is inter-
esting to note that a contribution to dissipation also comes
from the interplay between the electromagnetic fluctua-
tions and the dielectric loss properties of the two objects
[21].

In conclusion, we have proposed a design for a nano-
scale rack and pinion without contact by employing the
quantum fluctuations of the electromagnetic field. This
design, and the corresponding variants that could be read-
ily conceived, might help towards making more durable
machine parts for small mechanical systems.
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FIG. 3 (color online). Skipping velocity as a function of the
gap size for perfect metallic boundaries, corresponding to � �
19:3 g=cm3 (gold) and a1 � a2 � 10 nm, for different values of
radius and corrugation wavelength. Inset: the parameter � in-
troduced in the text as a function of H=� for perfect metals (red
dots) compared to the pairwise summation approximation (green
solid line). The dashed line shows the empirical formula pre-
sented in the text.
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