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Crossover in the Slow Decay of Dynamic Correlations in the Lorentz Model
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The long-time behavior of transport coefficients in a model for spatially heterogeneous media in two
and three dimensions is investigated by molecular dynamics simulations. The behavior of the velocity
autocorrelation function is rationalized in terms of a competition of the critical relaxation due to the
underlying percolation transition and the hydrodynamic power-law anomalies. In two dimensions and in
the absence of a diffusive mode, another power-law anomaly due to trapping is found with an exponent
—3 instead of —2. Further, the logarithmic divergence of the Burnett coefficient is corroborated in the
dilute limit; at finite density, however, it is dominated by stronger divergences.
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Spatial heterogeneities often give rise to intriguing slow
dynamics in complex materials, manifested, for example,
by broad frequency-dependent relaxation processes in col-
loidal gels which form stress-sustaining networks close to
the sol-gel transition [1-3]. Similarly, the presence of
differently sized proteins, lipids, and sugars in the cyto-
plasm of eukaryotes, summarized as cellular crowding, is
identified by slow anomalous transport as its most distinc-
tive fingerprint [4—6]. A further prominent example is
sodium silicates, where the formation of a space-filling
network of channels allows for slow diffusion of sodium
ions in an arrested host matrix [7]. A minimal model that
encompasses spatial disorder and slow dynamics is pro-
vided by the Lorentz model [8], i.e., classical point parti-
cles explore without mutual interaction a d-dimensional
space in the presence of a frozen array of randomly dis-
tributed (possibly overlapping) hard spherical obstacles of
radius o and concentration n.

Recently, striking behavior of the velocity autocorrela-
tion function (VACF), #(¢) := v~ 2(v(¢) - v(0)), has been
reported for a dense hard-sphere system (d = 3) close to
the freezing transition [9]. At intermediate time scales, a
regime of anticorrelations emerges due to the well-known
“rattling”’ of particles in their cages [10]. The long-time
behavior exhibits an intriguing crossover scenario from
long-living positive correlations, (f) = Agr™2, to a
high-density regime characterized by slowly decaying anti-
correlations, (f) =~ —ALt~>/2. The former corresponds to
the celebrated long-time anomaly in simple liquids [11],
connected to the formation of a vortex pattern due to local
momentum conservation. The mechanism for the latter
decay is presumably of totally different origin: in an array
of immobilized obstacles, the dynamics of a tagged particle
always remembers its frozen cage—a mechanism well
known for the Lorentz model [8].

For the Lorentz model itself, there is a long-standing
discrepancy between analytic theory and simulations about
the manifestation of the long-time tail. The existence of the
long-time anomaly in the Lorentz model has been pre-
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dicted within a rigorous low-density expansion as () =
—A't~4/271 for t — oo [12,13]. Earlier computer simula-
tions on two-dimensional systems [14—16] identified a
long-time relaxation of power-law type. At low densities,
the expected exponent was confirmed; the amplitude, how-
ever, differed significantly from the theoretical prediction.
At intermediate densities, the simulation results again
suggest power-law behavior, which was described phe-
nomenologically by nonuniversal, density-dependent ex-
ponents [15,17].

The regime of higher obstacle densities poses consider-
able challenges for theory; sequences of repeated-ring
collisions have been accounted for by a self-consistent
variational repeated-ring theory [18]. Gotze et al. [19]
have developed a mathematically consistent theory that
covers the physics of the low-density regime up to the
predicted localization transition. In particular, they predict
a competition between a critical power-law relaxation due
to the fractal clusters at the percolation transition and the
universal long-time tail. A similar scenario has been pro-
posed for lattice variants of the Lorentz model, and there,
evidence for a crossover scenario has been reported [20].

In this Letter, we present high-precision data for the two-
dimensional overlapping Lorentz model for reduced ob-
stacle densities n* := no? ranging from the dilute gas
n* = 0.005 up to the percolation threshold n}: = 0.35907
[21], and deep into the localized phase. In particular, we
focus on the algebraic decay of the VACF at long times
which is predicted for asymptotically low densities as [13]

n* 1

h(s) = —— = for
TS

s— oo, n*—0, d=2 (1
where s = t/7 is the mean number of collisions and 7! =
2n*v/ o the collision rate, and v denotes the velocity of the
particle. We analyze i(¢) up to times corresponding to
several 10* collisions, which implies that a noise level in
the correlation of the order of 107# is required. Some 10°
trajectories per obstacle density have been simulated, each
trajectory covering 10~108 collisions. We have calculated
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(r) by directly correlating velocities and obtain accurate
data up to a noise level of 1073, Furthermore, we have
measured the mean-square displacement (MSD), §r%(¢) :=
(AR(#)?), and extracted the diffusion coefficient D from
8r2(t — 00) = 4Dt. An alternative route to evaluate (¢) is
to perform a numerical second derivative of 8r%(z); we
have checked that both methods yield identical results
within statistical errors. The second method suppresses
the noise level further up to a factor 10°.

Results for the VACF are shown in Fig. 1 for the full
density range in the diffusive phase. On linear scales, the
data for the lowest density are indistinguishable from the
exponential relaxation, exp(—4t/37), of the Lorentz-
Boltzmann theory. For intermediate densities (n* = 0.1),
the VACF enters the region of anticorrelation already after
two collisions. Since the diffusion coefficient is related to
the total area under the VACF by a Green-Kubo relation,
D = (v*/d) [ (t)dt, the areas of positive and negative
region cancel for n* = n. In a double-logarithmic repre-
sentation, the data corroborate power-law behavior for
time windows covering 1-2 decades or 2—4 decades in
correlations. A gradual increase of the density towards 7
gives rise to apparent, density-dependent exponents, at
least if correlations below 10™# are ignored. Careful in-
spection of the VACF for n* = 0.20 reveals an intermedi-
ate power-law regime as well as a universal long-time tail,
consistent with the competition of critical and universal
relaxation predicted by Gotze et al. [19].

As a sensitive test for the crossover scenario, Fig. 2
exhibits the VACF multiplied by the expected power law
s2 of the universal tail. One infers that s?i(s) saturates in
the accessible time window for densities up to about 2/3 of
the percolation threshold, n* < 0.25. For densities n* <
0.1, the constant is approached from above in qualitative
agreement with the prediction of Das and Ernst [22] for the
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FIG. 1 (color online). Velocity autocorrelation function
(VACF) for the two-dimensional Lorentz model. Inset: negative
VACF on double-logarithmic scales. Solid lines are fits to the
universal long-time tails. The universal and the critical power
laws are indicated by thick straight lines, corresponding to
exponents —2 and 2/z — 2 = —1.34.

subleading long-time behavior,

n* 63
OEER. (1 b ) 2

For higher densities, one observes an increase, following
an apparent, density-dependent power law, before the uni-
versal tail is attained. The time scale where the crossover
occurs shifts to longer times as the percolation threshold is
approached, confirming the predicted scenario [19]. The
density n* = 0.10 reaches its asymptotic value remarkably
early; this is due to a cancellation of the subleading uni-
versal tail and the onset of critical slowing down.

Very close to n, the VACF exhibits the critical relaxa-
tion (1) ~ r2/272, which follows directly from the predic-
tion for the MSD, 8r2(r) ~ */. The numerical value of the
exponent, z = 3.03 [23], coincides with results of simula-
tions for diffusion on lattice percolation [24], corroborating
that the critical transport properties of the Lorentz model
share the same universality class.

Long-time tails originating from power-law distributed
exit rates of the cul-de-sacs have been predicted even in the
localized regime [25,26]. In particular, the VACF should
then decay as (f) ~ 3 for n* > n’ and d = 2; a predic-
tion that has not been tested so far. Appropriate rectifica-
tion plots are included in Fig. 2, and one infers that the data
follow such a power law for 1 order of magnitude in time,
i.e., three decades in correlation.
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FIG. 2 (color online). Rectification of the universal long-time
tail (a) above and (b) below the percolation threshold. Data
points are obtained as numerical derivatives of the MSD; open
circles for n* = 0.20 correspond to directly correlating veloc-
ities; extracted amplitudes are indicated by solid lines. The
dashed line in (b) represents the leading correction, Eq. (2).
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We have extracted the amplitudes A of the universal tail
as the long-time limit of —s%¢(s). In the regime of inter-
mediate densities, our data are in semiquantitative agree-
ment with earlier simulations [16,17], see Fig. 3. As has
been observed before, the values of A are significantly
larger than the low-density prediction, Ay = n*/r. Since
the calculation of A, relies on a perturbative correction to
the Lorentz-Boltzmann equation [13], quantitative agree-
ment requires the diffusion coefficient D to be sufficiently
close to the Boltzmann value D, = 3vo/16n*. This crite-
rion is not met even at low densities; a 40% suppression of
D/D, occurs at n* = 0.10 (see Fig. 3), signaling the onset
of subdiffusive motion. The diffusion coefficient for n* =
0.01 is in agreement with the first nonanalytic correction of
the low-density expansion [12,14]

An* ,
% —1- % Inn* — 0.8775n* + 4.519(n* Inn®)2 (3)

Although the amplitudes A appear to approach A, as n* —
0, the value for A at n* = 0.005 still deviates by approxi-
mately 25%.

Close to the percolation threshold, the crossover sce-
nario suggests that the amplitude should actually diverge.
Matching the critical relaxation (¢) ~ 72 and the uni-
versal tail ¢(t) ~ —A(¢t/7)~? at the divergent crossover
time scale . yields T2A ~ ti/ ‘. Assuming that t, also
describes the crossover of the MSD from anomalous to

diffusive transport, ti/ ¢ ~ Dt,, entails the prediction
2A ~ D7) ~ |t — | T @B 4)
as n* — n}, where 8 and v are percolation exponents [23].

The rapid increase of the amplitudes follows this prediction
remarkably well; even at n* = 0.1, Eq. (4) deviates by less

*

n

1 — r T T = 10°
o A ﬁ‘\“'\'"‘*~\
S 08 N
q N °
= « DIDg 2{10° =
3 06} £ <
2 e AJA g — Alley [17] s ©
3 » A/Ao— Lowe et al. [16] L |3 El
S I ) ) 2= =3
£ 0.4 I e A/A(— this work A § 1 101 &
g - <
£ o2f o
Aa

0 10°

5 001 2 3 5 0.1 2 3 5
Density n*

FIG. 3 (color online). Left axis (blue diamonds): suppression
of the diffusion coefficient D with respect to the Boltzmann-
Lorentz result Dy. The dashed line includes the leading low-
density correction, the dotted line corresponds to Eq. (3). Right
axis (red dots): reduced amplitude A/A, of the long-time tail
from low densities up to the divergence at n. Dashed line: fit to
Eq. (4), A/Ay = 1.6n*|n* — n¥|~91/3¢,

than 30% from the simulation results, whereas the low-
density prediction is off by a factor 6; see Fig. 3.

The VACF or, equivalently, the MSD is only the simplest
quantity exhibiting anomalous long-time behavior.
Deviations from Fickian diffusion are indicated by a non-
vanishing (super-)Burnett coefficient, which reads in two
dimensions

1d

1
B =+ [§<AR(t)4> - (AR(t)z)z} )

Within a hydrodynamic mode-coupling approach, it has
been predicted that the Burnett coefficient diverges loga-
rithmically in d = 2 [27]. Indeed, dB(r)/d log(r) saturates
for low densities, see Fig. 4. Again close to nZ, this behav-
ior is masked by the critical relaxation. Dynamic scaling
predicts a power-law divergence of (AR (1)*) ~ */%, where
7=Qv—B+uwn)/(v—B/4) =295<z [28]. Then,
B(t) ~ 71 at the critical density—consistent with
Fig. 4. The presence of finite clusters renders the dynamics
spatially heterogeneous, even below n.. A superposition of
Gaussian processes yields a linearly divergent Burnett
coefficient, B(f) = a,D?t for t — o, with @, = (4/3) X
(1/Ps — 1), and P, denotes the fraction of mobile parti-
cles, see Fig. 4. In the dilute limit, the prefactor is expected
to vanish as a,D? ~ n*.

Let us briefly comment on the long-time behavior of the
VACEF for the three-dimensional Lorentz model. Recently,
the critical properties of the localization transition have
been analyzed in terms of a scaling Ansatz for the
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FIG. 4 (color online). Top: Critical (solid line) and linear
(dashed line) divergence of the Burnett coefficient at inter-
mediate densities. Bottom: The logarithmic divergence at low
densities manifests itself as a finite long-time limit of
dB(s)/dlog(s).
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FIG. 5 (color online). VACEF for the Lorentz model in d = 3; a
crossover similar to Fig. 1 from the critical relaxation i(s) ~
§%/272 to the universal long-time tail ¢(s) ~ s~5/2 can be ob-
served.

van Hove correlation function [28,29]. The exponent of the
universal tail is larger, and the amplitude depends even
stronger on the density [13],

(3m)3/2
16

where s = t/7 again, and 7 = o/@n*v for d = 3. Such a
behavior is much more difficult to observe, and only rudi-
mentary evidence has been reported [30]. Our results
(Fig. 5) suggest a similar crossover scenario as for d =
2: the universal tail with exponent —5/2 is preceded by a
critical relaxation with exponent 2/z — 2 = —1.68; the
latter covers a growing time window upon approaching
the localization transition.

Finally, we emphasize again the universality of the
negative tail: it relies on the general mechanism that the
particle can return in its frozen heterogeneous environment
by reversing its path, thus remembering the presence of
free volume [8]. For the hard-sphere fluid of Ref. [9], the
role of the frozen environment is taken by long-lived cages
in the high-density regime. Hence, the negative tail () =
—AlLt%/2 should emerge in a time window, 7 < t < 7,
bounded by the time scales for momentum relaxation 7 and
structural relaxation 7,; the slowing down of the latter is
also reflected in a rapid increase of the viscosity of the
fluid, n ~ 7,. At even larger times, the positive hydro-
dynamic tail () = Agt~3/% is expected to follow, although
its amplitude should vanish rapidly, Aq ~ n~3/2 [11].
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W(s) ~ — (n*)2s5/2 for d=3,  (6)
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