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We determine the computational power of preparing projected entangled pair states (PEPS), as well as
the complexity of classically simulating them, and generally the complexity of contracting tensor
networks. While creating PEPS allows us to solve PP problems, the latter two tasks are both proven
to be #P-complete. We further show how PEPS can be used to approximate ground states of gapped
Hamiltonians and that creating them is easier than creating arbitrary PEPS. The main tool for our proofs is
a duality between PEPS and postselection which allows us to use existing results from quantum
complexity.
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Introduction.—Computing the properties of correlated
quantum many-body systems is a central task in many
fields in physics. Its complexity stems mainly from the
large dimension of the Hilbert space which grows expo-
nentially in the system size. In the last decades, the Density
Matrix Renormalization Group (DMRG) method has
proven extremely successful in the description of one-
dimensional phenomena [1]. Recently, it has been shown
that from the perspective of quantum information, DMRG
can be described as a variational method over the class of
Matrix Product States (MPS) [2]. MPS structure the state
space into a hierarchy of states with polynomial descrip-
tion complexity [3], and it turns out that already the lowest
levels of this hierarchy approximate many physical states
of interest extremely well. MPS have a natural extension to
two and higher dimensional lattices, called Projected
Entangled Pair States (PEPS), which also have an efficient
description and are promising candidates for variational
methods in higher dimensions [4]. It has been shown that
MPS can be created efficiently by a quantum computer [5],
and that they also can be simulated efficiently classically
[6]. In contrast, in two or more dimensions, it seems to be
hard to create arbitrary PEPS as well as to classically
compute expectation values. In fact, it has been shown
that there exist 2D PEPS which encode solutions to
NP-complete problems [7], thus posing lower bounds on
their complexity and computational power.

In the present Letter, we determine both the power of
creating PEPS and the complexity of classically simulating
them. We investigate which kind of problems we could
solve if we had a way to efficiently create PEPS, and find
that these are exactly the problems in the complexity class
PP (deciding whether a boolean formula has more satisfy-
ing than nonsatisfying assignments). Second, we show that
classically computing local expectation values on PEPS is
a #P-complete problem (counting the satisfying assign-
ments of a boolean formula). This result can be extended

to the contraction of arbitrary tensor networks, which turns
out to be #P-complete as well.

The main tool in our proofs is a duality between PEPS
and postselection, which permits us to use existing results
from quantum complexity [8]: any PEPS can be created by
a postselected quantum circuit, and any output of such a
circuit can be written as a PEPS. We also apply this duality
to show that ground states of gapped local Hamiltonians in
D dimensions can be efficiently approximated by the
boundary of a (D� 1)-dimensional PEPS. Finally, we
compare the power of creating PEPS to the power of
creating ground states of local Hamiltonians. While in
general they are equally hard, we find that when restricting
to gapped Hamiltonians, creating ground states becomes
easier: it is in the weaker class QMA, the quantum ana-
logue of NP.

PEPS and postselection.—We start by recalling the
definition of PEPS [9]. Consider an arbitrary undirected
graph where each of the vertices corresponds to a quantum
system (a spin) of Hilbert space dimension d. A PEPS on
these N spins is constructed by placing as many virtual
spins of dimension D on each vertex as there are adjacent
edges. Along each edge, these virtual spins form maxi-
mally entangled states

PD
i�1 jiijii. The physical spins are

now obtained from the virtual ones by applying a linear
map P�v�:CD � . . . � CD ! Cd at each vertex v. For the
sake of readability, we will mostly suppress the depen-
dence of P on v. The graph underlying the PEPS will
usually be chosen according to the physical setup, typically
a two or higher dimensional lattice.

Let us now turn to postselected quantum circuits [8].
Roughly speaking, postselection means that we can mea-
sure a qubit with the promise of obtaining a certain out-
come. More precisely, the postselected circuits we consider
start from the j0 � � � 0i state, perform a sequence of unitary
one- and two-qubit gates, and postselect on the first qubit
being j0i. Thereby, the state �j0ij�0i � �j1ij�1i is pro-
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jected onto the state j�0i, which is the state created by the
postselected quantum circuit. Note that a state with � � 0
will not be considered a valid input.

In the following, we show that the output of a postse-
lected quantum circuit can be expressed efficiently as a
PEPS on a 2D square lattice with bothD � d � 2. We start
by briefly recalling the concept of measurement based
quantum computation [10]: One starts from the 2D cluster
state (which is a PEPS with D � d � 2 [9]) and imple-
ments the quantum circuit by a sequence of projective
measurements on the individual spins. Finally, the output
is found in the unmeasured qubits, up to Pauli corrections
which depend on the previous measurement outcomes. In
order to express the output of a postselected circuit as a
PEPS, we therefore start by implementing its unitary part
in the measurement based model. We do this by projecting
each qubit on the outcome jai which does not give a Pauli
correction, by replacing the original cluster projector PC
with jaihajPC. This leaves us with a set of qubits holding
the output of the circuit, and by projecting the first qubit on
j0i, we obtain the output of the postselected quantum
circuit. The transformation between the representations
can be carried out efficiently, and the resulting PEPS has
a size polynomial in the length of the circuit.

Conversely, any PEPS can be efficiently created by a
postselected quantum computer since any linear operator P
can be implemented deterministically using postselection.
This is accomplished by implementing a POVM measure-
ment [18] containing P as an element and postselecting the
ancilla register on the outcome corresponding to P.

In summary, on the one side, we have that any postse-
lected quantum circuit can be translated efficiently into a
2D PEPS with D � d � 2, while conversely there is also
an efficient transform from any PEPS to a postselected
quantum circuit. In turn, this shows that all the features and
the full complexity of PEPS can already be found in the
simplest case of two-dimensional PEPS, making them an
even more interesting subject for investigations.

The power of creating PEPS.—Let us first briefly intro-
duce the complexity classes #P and PP [11]. Consider an
efficiently computable boolean function f:f0; 1gN ! f0; 1g,
and let s � s�f	: � jfx:f�x	 � 1gj be the number of sat-
isfying assignments. Then, finding s defines the counting
class #P, while determining whether s 
 2n�1 (i.e., finding
the first bit of s) defines the decision class PP. This class
contains NP and BQP as well as QMA, the quantum
version of NP.

First, we investigate the computational power of creat-
ing PEPS. More precisely, we consider the scenario of
Fig. 1: We want to know which decision problems we
can solve with one use of a PEPS oracle, i.e., a black box
which creates the quantum state from its classical PEPS
description, together with efficient classical preprocessing
and quantum postprocessing.

We now use the PEPS-postselection duality to show that
the power of creating PEPS equals PP. It has been shown

that PostBQP—the class of decision problems which can
be solved by a postselected quantum computer—equals
PP, PostBQP � PP [8]. This readily implies that a PEPS
oracle allows us to solve PP problems instantaneously by
preparing the output of the postselected circuit as a PEPS
and just measuring one output qubit in the computational
basis. On the other hand, this is the best we can do with a
single use of the PEPS oracle, since every PEPS can be
generated efficiently by a postselected quantum computer.
BQP postprocessing instead of a simple one-qubit mea-
surement does not increase the computational power, since
it commutes with the postselection and can thus be incor-
porated in the PEPS.

The fact that creating PEPS allows us to solve
PP-complete problems strongly suggests the existence of
PEPS which cannot be created efficiently by a quantum
computer. Note however that the states which appear in the
PP-hardness proof above are not of this type: once the
corresponding counting problem is solved, they can be
easily constructed. While it appears very unlikely that all
PEPS can be constructed efficiently from some normal
form (it would imply QMA � QCMA and BQP=qpoly �
BQP=poly [12]), an example of such a state is still
missing.

The classical complexity of PEPS.—Let us now inves-
tigate the complexity of classically simulating PEPS and
its generalization, the contraction of tensor networks. For
the case of PEPS, there are at least three possible defini-
tions of the problem: compute the normalization of the
PEPS (NORM), compute the unnormalized expectation
value of some observable (UEV), and compute the normal-
ized expectation value (NEV). Since they can be trans-
formed easily into each other, we will use whichever is
most appropriate.

We first show that contracting PEPS is #P-hard, i.e., that
for any (polynomial) boolean function f, s�f	 can be found
by simulating a PEPS. Therefore, we take a quantum
circuit which creates

P
xjxiAjf�x	iB and encode it in a

PEPS. Then, the normalized expectation value of �z of B
allows us to compute s�f	.

To show that the simulation of PEPS is inside #P, we
have to show that the normalization of the PEPS, or equiv-
alently the success probability for the postselection, can be
computed by counting the satisfying assignments of some
boolean function. This can be done by adapting well-
established quantum complexity techniques (see [8] and

 

FIG. 1. The power of creating PEPS: The original decision
problem is transformed into a PEPS description by a polynomial-
time algorithm. The black box creates the corresponding quan-
tum state, and an efficient quantum postprocessing returns the
solution. Which kind of problems can we solve this way?
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references therein): First, approximate the postselected
circuit using only Toffoli and Hadamard gates [13,14].
The probability px for a state jxi before postselection is
obtained as a kind of path integral [15], by summing the
amplitudes for all possible ‘‘computational paths’’ � �
��1; . . . ; �T�1	, where j�ti is the state at step t and T the
length of the circuit:

 px �
��������
X

�

�x;�

��������
2
�
X

�;� 0
�x;���x;� 0 ;

with �x;� a product over transition amplitudes A�t!�t�1

along the path � . The normalization of the PEPS is ob-
tained as the sum over all states where the postselection
succeeds,

P
�xp�0; �x	. This can be rewritten as the sum over an

efficiently computable function f� �x; �; � 0	 � ��0; �x	;����0; �x	;� 0
which takes values in f0;
1g, as the circuit consisted only
of Toffoli and Hadamard gates. Now, this sum can be
computed by counting the satisfying assignments of the
function fbool��; z	: � �f��	 
 z	, z 2 f0; 1g, which shows
that the simulation of PEPS is in #P. Together, we find that
the classical simulation of PEPS is #P-complete under
weakly parsimonious reductions (see [16]).

It is natural to ask whether this also shows that contract-
ing general tensor networks is in #P. For a tensor network
T, let us denote its contraction by C�T	 2 C. Since the
contraction of PEPS is a special case, it is clear that the
problem is #P-hard. To place it within #P, observe first that
jC�T	j2 � C�T � T�	 can be found by attaching a physical
system of dimension one to each site and computing the
normalization of the resulting PEPS. To determine the
phase of C�T	, observe that C�T � T0	 � C�T	 � C�T0	.
Thus, by setting T0 � T�, we get jRe�C�T	�j, while the
sign can be determined by adding another T00 � c > 0.
This proves that contracting tensor networks is
#P-complete.

The obtained hardness results are stable under approx-
imations. To see why, note that any counting problem can
be reduced to any of our three primitives with only linear
postprocessing, and thus approximating these primitives is
as hard as approximating counting problems can be. For
NEV, this again works by preparing

P
jxiAjf�x	iB and

computing the expectation value of B. For NORM and
thus UEV, note that the output of any normal quantum
circuit and thus

P
jxiAjf�x	iB has a known norm when

written as a PEPS, since the success probability of each
cluster projector is known, and the probability of the two
measurement outcomes in the cluster is unbiased [10].
Thus, the probability for j1iB can be readily determined
from the norm of the PEPS where we postselected on j1iB.

PEPS and ground states.—The interest in MPS and
PEPS stems mainly from the fact that those states perform
extremely well in approximating ground states. In the
following, we use the PEPS–postselection duality, and a
relation between postselection and cooling, to shed new
light on the connection between PEPS and ground states. In

particular, we show that the unique ground state of a
gapped Hamiltonian on a D-dimensional lattice can be
approximated efficiently by the border of a PEPS withD�
1 dimensions.

Consider a Hamiltonian on N spins, H �
P
iHi, where

each Hi acts on a finite number of spins, with a unique
ground state and a polynomial energy gap � 
 1=poly�N	.
Starting from a random state j�i, the ground state can be
efficiently approximated via j 0i � exp���H�j�i. The
imaginary time evolution can in turn be approximated
using the Trotter decomposition, which only requires op-
erations exp���=NHi� acting on finitely many spins.
Since those operations are linear, they can be implemented
using postselection, and we see that postselection can be
used to cool into the ground state. By embedding the
postselected cooling procedure in a PEPS, the ground state
of any gapped N-particle Hamiltonian can be approxi-
mated up to � by the boundary of a PEPS, where the extra
dimension has depth M� poly�N; 1=�	. In case the Hi are
local, the PEPS can be simplified considerably since any
local linear operation can be implemented directly on the
level of the PEPS without the need for ancilla qubits.

The power of creating ground states.—As we have seen,
PEPS can encapsulate problems as hard as PP. However,
these PEPS are quite artificial, while in practice one is
often interested in PEPS in connection with ground states.
Therefore, let us have a look at the computational power of
a ground state oracle, i.e., a black box which creates the
ground state from the Hamiltonian.

First, let us introduce the complexity class QMA [17].
Colloquially, QMA is the quantum version of NP; i.e., it
contains all decision problems where for the ‘‘yes’’ in-
stance, there exists an efficiently checkable quantum proof,
while there is no proof for any ‘‘no’’ instance. In a seminal
work, Kitaev [17,18] has shown that the problem of deter-
mining ground state energies of local Hamiltonians up to
polynomial accuracy isQMA-complete. More precisely, in
LOCAL HAMILTONIAN one is given an N-qubit local
Hamiltonian H �

P
Hi with the promise that the ground

state energy E0 < a or E0 > b, b� a > 1=poly�N	, and
the task is to decide whether E0 < a. Clearly, the ground
state ofH serves as a proof for a yes instance. In successive
works, the class of Hamiltonians has been restricted down
to two-particle nearest neighbor Hamiltonians on a 2D
lattice of qubits [19].

Let us briefly reconsider our cooling protocol in the light
of QMA. It is easy to see that the QMA proof need not
necessarily be the ground state, as long as it is close enough
in energy (depending on the verifier). Since our cooling
protocol suppresses higher energy levels exponentially, the
correspondence between postselection and cooling shows
that a postselected quantum computer can be used to create
proofs forQMA problems, or differently speaking, that any
QMA proof can be efficiently expressed as a PEPS.

In the following, we give some observations which
indicate that creating ground states of gapped Hamil-
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tonians is easier than creating PEPS. First, note that a
ground state oracle for arbitrary Hamiltonians is still as
powerful as PP. To see why, take a PP problem and
encapsulate it in a PEPS. By perturbing the P’s randomly
by a small amount, one obtains a PEPS which is the unique
ground state of a local Hamiltonian, which can be derived
efficiently from the P’s [3,20]. This shows that an unre-
stricted ground state oracle enables us to solve PP prob-
lems. However, the gap � of the above Hamiltonian will be
exponentially small: if not, one could add a small penalty,
say �=100, on the ‘‘answer’’ qubit and use that the original
Hamiltonian has ground state energy E0 � 0: Then, deter-
mining the value of that qubit could be solved in QMA,
thus proving QMA � PP which is considered unlikely
[21].

Since ground states of general Hamiltonians are not
easier to create than PEPS, let us now assume an oracle
which only works for local Hamiltonians with a unique
ground state, known ground state energy, and a polynomial
spectral gap to the first excited state. (Alternatively, one
could consider ‘‘proof oracles’’ for the LOCAL HAMIL-

TONIAN problem.) It is easy to see that this restricted
oracle, even with BQP postprocessing, is at most as power-
ful as QMA. The proof is the ground state, and the verifier
is constructed as follows. Let V1 be the verifier for the
ground state, it accepts the ground state with pGS, and any
excited state with probability at most pES � pGS � �,
� � 1=poly�N	. Further, let V2 be the postprocessing cir-
cuit which has a polynomial separation between the yes
and the no answer if applied to the ground state, pyes �

1=2� 	, 	 � 1=poly�N	. Take Q � �=2�1
��1 and construct

the complete verifier as follows: with probability Q, run
V1, and with �1�Q	, run V2. One can readily check that
this gives a polynomial separation between the cases where
the proof is the ground state and the postprocessing returns
‘‘yes,’’ and the cases where either the proof is not the
ground state or the postprocessing returns ‘‘no.’’ The
same strategy can be used to show that a PEPS oracle
cannot be tested on all inputs unless QMA � PP:
Otherwise, one could take a PP-hard PEPS and construct
a verifier which either runs the testing routine or reads out
the PP solution.

These observations show that imposing a constraint on
the spectral gap of a Hamiltonian has direct implications
on its computational complexity, and we think that the
complexity properties of gapped Hamiltonians are worth
being considered. On the one side, in the above scenario, it
is not clear whether allQMA problems can be solved using
this oracle; on the other side, it is not clear how important
the knowledge of the ground state energy is—note how-
ever that we also had this knowledge in the PP-hard case. It
is also an interesting question whether the problem LOCAL

HAMILTONIAN remains QMA-complete when restricting to
polynomially gapped Hamiltonians. If not, GAPPED LOCAL

HAMILTONIAN should be a natural candidate for a physi-
cally motivated class of problems weaker than QMA.
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[2] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[3] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,

quant-ph/0608197.
[4] F. Verstraete and J. I. Cirac, cond-mat/0407066.
[5] C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and M. M.

Wolf, Phys. Rev. Lett. 95, 110503 (2005).
[6] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[7] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac,

Phys. Rev. Lett. 96, 220601 (2006).
[8] S. Aaronson, Proc. R. Soc. A 461, 3473 (2005).
[9] F. Verstraete and J. I. Cirac, Phys. Rev. A 70, 060302

(2004).
[10] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188

(2001); R. Raussendorf, D. E. Browne, and H. J. Briegel,
Phys. Rev. A 68, 022312 (2003).

[11] C. M. Papadimitriou, Computational Complexity
(Addison-Wesley, Reading, MA, 1994).

[12] S. Aaronson, Theory of Computing 1, 1 (2005).
[13] Y. Shi, Quantum Inf. Comput. 3, 84 (2003).
[14] D. Aharonov, quant-ph/0301040.
[15] C. M. Dawson et al., Quantum Inf. Comput. 5, 102 (2005).
[16] NORM is UEV of 1. UEV of A is obtained from NORM

via h jAj i � h ~ j ~ i� k A k h j i, where j ~ i is derived
from j i by replacing the relevant P by �A� k A k 1	1=2P.
Clearly, NEV can be computed using UEV and NORM. To
compute NORM from NEV, take the PEPS with the post-
selection omitted—this has a known norm [10], and
compute the NEV of diag�1; 0	 on the qubit to be post-
selected. All reductions are weakly parsimonious: problem
A can be solved by one call to problem B, with efficient
preprocessing of the input and postprocessing of the out-
put. Note that two (or more) parallel #P-queries can be
encoded in a single one, by considering h�x; y; b	, defined
as f�x	 for b � 0 and g�y	 for b � 1, x � 0.

[17] D. Aharonov and T. Naveh, quant-ph/0210077.
[18] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and

Quantum Computation (American Mathematical Society,
Providence, Rhode Island, 2002).

[19] R. Oliveira and B. M. Terhal, quant-ph/0504050.
[20] D. Perez-Garcia, M. M. Wolf, F. Verstraete, and J. I. Cirac

(to be published).
[21] M. Vyalyi, Electronic Colloquium on Computational

Complexity 10, Report TR03-021 (2003).

PRL 98, 140506 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
6 APRIL 2007

140506-4


