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We quantify an unknown mixed quantum state’s entanglement by suitable, local parity measurements
on its twofold copy. The associated observable qualifies as a generalized entanglement witness.
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Quantum entanglement is arguably the most bizarre and
anti-intuitive feature of quantum mechanics, and, further-
more, the key ingredient for an upcoming quantum infor-
mation technology. It is the cause of quantum-nonlocality,
leading to ““spooky action on a distance’’ and the violation
of Bell’s inequalities, and opens novel means of data
encryption and communication, as well as the efficient
factorization of large numbers as a crucial prerequisite of
breaking cryptographic codes.

Yet, despite its primordial importance, entanglement is
hard to grasp: There is so far no observable which allows
for the direct measurement inscribed into a given, arbitrary
quantum state. Only indirect ways to assess a given quan-
tum state’s degree of entanglement are available: Either
through state-selective entanglement witnesses, which are
auxiliary observables to identify predefined classes of en-
tangled states—i.e., some a priori knowledge on the state
to be detected is required, and other classes of states with
exactly the same entanglement properties may remain un-
identified, or through quantum tomography —the experi-
mental reconstruction of the full density operator @ from
the measurement of a complete set of observables, fol-
lowed by the evaluation of some entanglement measure,
which is in general a nonlinear function of . While wit-
nesses, though efficiently implementable, are no reliable
tool for all purposes, tomography implies a rapidly grow-
ing experimental overhead as the Hilbert space dimension
of the composite system under study increases—either
through increasing dimensions of the subsystems, or
through an increasing number of these. This rapidly satu-
rates experimental resources.

Therefore, alternative strategies [1,2] are urgently
needed, since experiments now succeed to control increas-
ingly large quantum systems, though meet a hard barrier
when it comes to measure efficiently and in real time the
available amount of entanglement as their central resource.
In the present contribution, we describe how few experi-
mental measurements on a twofold copy ¢ ® ¢ of the
mixed state to be analyzed provide a tight estimate of the
entanglement inscribed in @, for bipartite systems of arbi-
trary finite dimension. This defines a new strategy to over-
come the above impediments, and also yields a generalized
entanglement witness.
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We start out with a short reminder of pure state entan-
glement and the efficient measurement thereof, that will
already fix the algebraic structure which we will use in our
subsequent generalization for mixed states: The concur-
rence ¢(¥) of a finite dimensional bipartite pure state [ V)
can be expressed through the expectation value of the self-
adjoint operator A = 4P_ ® P_, with respect to a twofold
copy |¥) ® | W) of |¥) [3-3]:

c(W) = (V] @ (WIA|W) @ | ). (1)

P_ is the projector on the antisymmetric subspace of the
two copies of either subsystem. c(W) is directly accessible
in laboratory experiments, through a projective measure-
ment of the antisymmetric component of |¥) ® [¥) in
either subsystem, as recently demonstrated for twin pho-
tons [6]. The same recipe applies for higher-dimensional
bipartite systems, and for multipartite generalizations of
concurrence [5], since the algebraic structure of (1)
prevails.

We now want to generalize this measurement prescrip-
tion for mixed states of bipartite quantum systems. The key
difficulty here stems from the abstract definition of mixed-
state concurrence through the “convex roof™ construction,
which takes account of the nonuniqueness of a pure state
decomposition of a density matrix: Consequently, one has
to determine the minimum average concurrence c(Q) =
inf>";c(¢;) of all ensembles {| )} that describe the density
matrix @ [7]. This distinguishes nonclassical from classical
correlations typical of a statistical mixture. The optimiza-
tion problem renders the general evaluation of the convex
roof a hard mathematical task, and any direct approxima-
tion thereof will yield an upper rather than a lower bound
of the entanglement of 0. However, in order to distinguish
separable from entangled states, we need a lower bound,
which we will derive by generalizing (1), and which we
will show to provide tight estimates of mixed-state con-
currence. In particular, these estimates are experimentally
directly accessible, through a small number of projective
measurements, for arbitrary Q.

Let us start from the observation that the twofold copy
|¥) ® | W) is symmetric with respect to the exchange of the
copies of both subsystems. This is the reason why expec-
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tation values of P_ ® P, or P, ® P_, with P, the sym-
metric counterpart of P_, do not contribute to pure
state concurrence (1), and a finite expectation value of
either observables unambiguously characterizes a twofold
copy of a state to be mixed. A positive expectation value of
P_® P_, on the other hand, can be not only due to
entanglement of the underlying state, but also due to its
mixing.
Combining these two observations, we conjecture that

[c(@)] = Tr(e ® V), (2)

(i=1,2)withV, =4P_—P,)®P_,and V, =4P_®
(P_ — P.). The proof of this inequality is deferred to the
Appendix below.
Inequality (2)
consequences:
(1) The lower bound on its right-hand side can be ex-

pressed in terms of the purities of Q, Q(rl), and Q(,z),

implies the following important

Tr (e ® oV;) = 2[Trg* — Tr(e}")?], 3)

with Q(,i) the reduced density matrix of either subsystem, in

close analogy to the expression c2(¥) = 2[1 — Tr(p\")?]
for pure state concurrence [8].

(2) There is an interesting interpretation of V: Any
nonvanishing contribution to the expectation value on the
right-hand side of (2), where the mixedness of the state is
already substracted, must be due to nonvanishing quantum
correlations inscribed in @: Since the left-hand side, c(@),
is strictly positive for entangled states, and vanishes ex-
actly for separable states, Tr(@ ® @V;) must be nonpositive
for any separable density operator. Conversely, positive
values of Tr(p ® ¢V;) unambiguously identify @ as en-
tangled. Consequently, V qualifies as a generalized entan-

2x5 dimensional system

glement witness, applicable for arbitrary states, without
using a priori knowledge on Q.

(3) Moreover, and most importantly, our new lower
bound is given in terms of expectation values of P_ and
P . Hence, it can be directly measured, as the probabilities
of finding the twofold copies of each state’s individual
subsystems with positive or negative parity. This implies
only little overhead as compared to the experimental mea-
surement of pure state concurrence [6].

Let us assess the tightness of (2), by evaluating the
expectation value of V for increasingly mixed random
states of 2 X 5 and 3 X 3 dimensional systems. The ran-
dom states were obtained by random unitary evolution of a
pure state of a tripartite system, composed of the bipartite
subspace which supports the desired random states, and an
environment component, followed by a subsequent trace
over the environment, at different times. The estimate (2) is
then compared with the states’ concurrence in quasipure
approximation (QPA) [9] in Fig. 1, for samples of 600000
random states. QPA is known to provide very good approx-
imations of a mixed-state’s concurrence if the mixing is not
too large (hence the label “quasipure’’). Our new bound is
seen to be only slightly weaker than QPA, as clearly
demonstrated by the present comparison. Indeed, the com-
parison is in most cases excellent, in particular, for weakly
mixed states. Only for a relatively small portion of rela-
tively strongly mixed (and weakly entangled) states does
(2) take negative values (while QPA remains positive), and
thus provide an inconclusive result.

Thus, Eq. (2) provides a reliable and directly measurable
bound for an unknown state’s concurrence. How do the
necessary experimental resources scale with the system’s
size (determined by the individual dimensions of the factor
spaces)? According to the explicit form of V, we have to
determine the state’s weight on the symmetric and anti-
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Squared mixed-state concurrence c(@)?, approximated by its measurable lower bound Tr{@ ® o(V, + V,)/2] as given by (2),

vs its lower bound in quasipure approximation, for random states of a 2 X 5 dimensional (a, b, and c), and of a 3 X 3 dimensional
system (d, e, f). The different panels represent states with different degrees of mixing: a and d display the case of weakly mixed states

(0.2 = /1 — Tre? = 0.21), b and e correspond to the regime of intermediate mixing (0.4 < /1 — Tre?> = 0.405), and ¢ and f show

strongly mixed states (0.529 < /1 — Tre? = 0.533). The dashed lines indicate equality of both bounds. In particular, for highly
entangled states and for states with little mixing the bound is very good; but it also yields a surprisingly good characterization of rather
strongly mixed states.
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symmetric subspaces of the two copies of each of its
components. Consequently, for a bipartite state, with id; =

PO + P(Ji), i =1, 2, two measurements need to be per-
formed (here we assume that such parity measurement can
be performed by measuring one single observable, inde-
pendently of the subsystems’ dimension). This is in favor-
able contrast to a tomographic measurement, where d* — 1
observables need to be measured [10], with d the dimen-
sion of the subsystems.

Let us conclude with a brief digression on what we
understand by a twofold copy of an unknown quantum
state, since this ansatz, while widely accepted [1-4], still
raises some controversy in the literature [11]: What we do
assume here is the availability of a reliable source produc-
ing two faithful copies of the same state ©? Thus, the
experimentalist who wants to implement our measurement
scheme has to be certain about the source providing ¢ ® @,
but can be perfectly ignorant about the initialization of the
source, and, hence, of the specific state @ which is deliv-
ered in a twofold copy. In itself, the preparation of two
identical copies of @ is a very realistic experimental task,
given the stunning control over the microscopic constitu-
ents of matter, e.g., in state of the art quantum optical
experiments.

We are indebted to Luiz Davidovich, Paulo Henrique
Souto Ribeiro, and Stephen Patrick Walborn for fruitful
discussions, comments and remarks. This work was sup-
ported by the Alexander von Humboldt Foundation.

Appendix.—For completeness, let us prove inequality
(2): we show that the estimate applies for the average
concurrence of any pure state decomposition Q =

Zi|¢i>(¢i|3
Tr(e® eV, = Z<¢l| ®(d;lVilp)® ;)
ij

< <Z \/<¢,~| ® (pilAlp;) ® |¢i>>2

= ZC(¢1)C(¢J) (AL)

and thus, in particular, for the decomposition that achieves
the minimum average concurrence. It is sufficient to dem-
onstrate the inequality’s validity for each single term in the
above sum. For convenience, we rebaptize |¢;) as |¢), and
|¢;) as |$). Given |¢)’s Schmidt decomposition [¢) =
SiVAliy® i) and |¢)’s expansion in the same one-
particle bases, [) = 3, ;4;;1i) ® | j), (A1) can be written as

WA — P = AiA;
Z‘/f PijfAidj = i /; j

i#j
X \lelpipqu - wiqlvbjplz’

i#]
P#q

(A2)

for V,, (and analogously for V;). With the help of the
Cauchy-Schwarz inequality, the right-hand side (RHS) of
this expression can be bounded from below,

RHS = \/zm)\j\FI%p%q = Yig¥pl®

i#j i#]
/ P#q

= \/ZAiA.f\/le/’ii‘//jj — il
i#] i#]
= Z MNAj i — il

i#j

For the left-hand side (LHS), we find

LHS = Z‘p;'kiwjj\//\i)\j - |¢ij|2/\i

i#j

1
= EZ('”[%;’ + lpjjl//ii)\/)ti)lj - (|¢ij|2/\i + |¢ji|2/\j)

i#j

= Z(Wu%’ﬂ —ljithiiDyAid;

i#j

= le//ii‘r//jj - ‘r//ij'vl’jil AiAj,

i#j

where  (|;;1V/A; — |¢fj,|\/7\7)2 =0, |yl*+1yl* =
20pibil, i + i = 2RW555) = 2l and
the triangle inequality |¢f;| — |l = by —
Yijjil were used. Thus, LHS = RHS, which was our
initial claim.
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