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We provide a quantitative analysis of the phenomenon of crowding of near-extreme events by
computing exactly the density of states (DOS) near the maximum of a set of independent and identically
distributed random variables. We show that the mean DOS converges to three different limiting forms
depending on whether the tail of the distribution of the random variables decays slower than pure
exponential, faster than pure exponential, or as a pure exponential function. We argue that some of these
results would remain valid even for certain correlated cases and verify it for power-law correlated
stationary Gaussian sequences. Satisfactory agreement is found between the near-maximum crowding in
the summer temperature reconstruction data of western Siberia and the theoretical prediction.
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Extreme value statistics (EVS) [1]—the statistics of the
maximum or the minimum value of a set of random
observations—has seen a recent resurgence of interest
due to its applications found in diverse fields such as
physics [2], engineering [3], computer science [4], finance
[5], hydrology [6], and atmospheric sciences [7]. In par-
ticular, for independent and identically distributed (IID)
observations from a common probability density function
(PDF) p�X�, the EVS is governed by one of the three well-
known limit laws [1], namely, (a) Fréchet, (b) Gumbel, or
(c) Weibull, depending on whether the tail of p�X� is
(a) power law, (b) faster than any power law but un-
bounded, or (c) bounded, respectively. Recently, these
same limiting laws have also been observed in a seemingly
different problem concerning the level density of a Bose
gas and integer partition problem [8].

While EVS is very important, an equally important issue
concerns the near-extreme events [9], i.e., how many
events occur with their values near the extreme? In other
words, the issue is whether the global maximum (or mini-
mum) value is very far from others (is it lonely at the top?),
or whether there are many other events whose values are
close to the maximum value. This issue of the crowding of
near-extreme events arises in many problems. For instance,
in disordered systems the low temperature properties are
governed by the spectral density function of the excited
states near the ground state. In the study of weather and
climate extremes, an important question is ‘‘How often do
extreme temperature events such as heat waves and cold
waves occur?’’ While for an insurance company it is very
important to safeguard itself against excessively large
claims, it is equally or may be more important to guard
itself from an unexpectedly high number of them. In many
of the optimization problems finding the exact optimal
solution is extremely hard and the only practical solutions
available are the near-optimal ones [10]. In these situ-
ations, prior knowledge about the crowding of the solutions
near the optimal one is very much desirable.

In this Letter, we study quantitatively the phenomenon
of the crowding of events near the extreme value for IID
random variables and find rather rich and often universal
behavior. In general, the events that occur in nature are
correlated. However, when the correlations among them
are not very strong, their EVS converges to that of the IID
random variables [11]. This is why the limiting laws of
EVS of the IID random variables are very useful. Here we
consider IID random variables in the similar spirit of the
random-energy model [12] for disordered systems, which,
despite its simplicity that the energy levels are IID random
variables, has been successful in capturing many qualita-
tive features of complex spin-glass systems. Moreover, we
provide an example of a power-law correlated case, where
the behavior of near-extreme events converges to that of
the IID random variables. In addition, by comparing the
near-maximum crowding in the reconstructed summer
temperature data of western Siberia against the prediction
from the IID random variables, we find satisfactory
agreement.

We start with a sequence of N IID random observations
fX1; X2; . . . ; XNg, drawn from a common PDF p�X�. Let
Xmax be the maximum of the sequence, i.e., Xmax �
max�X1; X2; . . . ; XN�. A natural measure of the crowding
of events near Xmax is the density of states (DOS) with
respect to the maximum,

 ��r; N� �
1

N

XN�1

fXi�Xmaxg

��r� �Xmax � Xi��; (1)

where r is measured from the maximum value, and we do
not count Xmax itself, i.e.,

R
1
0 ��r; N�dr � 1� 1=N.

Clearly, ��r; N� fluctuates from one realization of the
random sequence to another, and one is interested in know-
ing whether its statistical properties show any general
limiting behavior, in the same sense, as one finds for the
EVS. Note that, even though the random variables are
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independent, the different terms in Eq. (1) become corre-
lated through their common maximum Xmax.

We find that the mean DOS ��r; N� displays rather rich
limiting behavior, as N ! 1. If the tail of the parent
distribution p�X� of the random variables decays slower
than a pure exponential function, the behavior of ��r; N� is
governed by the corresponding extreme value distribution.
On the other hand, when the tail of p�X� is faster than a
pure exponential, it is related to the parent distribution
itself. In the borderline case when p�X� has a pure expo-
nential tail, ��r; N� is entirely different.

To find ��r; N�, first consider Eq. (1) for a given value
of the maximum at Xmax � x. Then the rest of the
(N � 1) variables are distributed independently according
to the common conditional PDF pcond�X; x� � p�X�=R
x
�1 p�y�dy. Hence the conditional mean DOS, from

Eq. (1), is �cond�r; N; x� � ��N � 1�=N�pcond�x� r; x�.
For a set of N IID random variables, the PDF of their
maximum value Xmax � x is

 pmax�x;N� � Np�x�
�Z x

�1
p�y�dy

�
N�1

: (2)

Thus, ��r; N� �
R
1
�1 �cond�r; N; x�pmax�x; N�dx. Upon

substituting the expressions for �cond�r; N; x� and
pmax�x;N�, a little algebra shows that

 ��r; N� �
Z 1
�1

p�x� r�pmax�x;N � 1�dx: (3)

This is the key result, which is valid for all N. We next
analyze its limiting behavior for large N.

For IID random variables, it is known that pmax�x� has a
limiting distribution [1]:

 bNpmax�x � aN � bNz;N� ���!N!1f�z�: (4)

The nonuniversal scale factors aN and bN depend explicitly
on the parent distribution p�X� and N. However, the scal-
ing function f�z� is universal and belongs to (a) Fréchet,

(b) Gumbel, or (c) Weibull, depending only on the tail of
p�X�. For example, if p�X� � exp��X�� for large X, then
aN � �lnN�1=� and bN � ��1�lnN�1=��1 for large N, and
the scaling function is the universal Gumbel PDF f�z� �
exp��z� exp��z��. Note that, as N ! 1, for � < 1,
bN ! 1, whereas bN ! 0 for � > 1. In fact, this large N
behavior of bN is not restricted to only this specific tail of
p�X�, but is more generic: for any slower than exp��X� tail
of p�X�, as N increases bN also increases, whereas for any
faster than exp��X� tail, bN decreases as N increases. This
is indeed responsible for the generic limiting behavior of
��r; N�.

When p�X� has a slower than exponential tail, so that
bN ! 1 as N !1, it is useful to make a change of vari-
able x � aN � bNz in Eq. (3). Then one immediately real-
izes that p�bNz� aN � r� is highly localized, in the limit
N ! 1, compared to f�z�, i.e., bNp�bNz� aN � r� !
��z� �r� aN�=bN�. Therefore, in the scaling region of
order bN , around r � aN

 ��r; N� ���!N!1 1

bN
f
�
r� aN
bN

�
: (5)

On the other hand, if the tail of p�X� is faster than
exponential, so that bN ! 0 as N ! 1, the PDF of the
maximum becomes highly localized near x � aN, i.e.,
pmax�x;N� ! ��x� aN�. Therefore, Eq. (3) yields

 ��r; N� ���!N!1p�aN � r�: (6)

In EVS, the convergence towards the limiting distribu-
tion is usually very slow [13]. Therefore, it is instructive to
check how ��r; N� approaches the limiting form for large
N. For this purpose, now we consider explicit forms of
p�X�, such that ��r; N� can be computed to high accuracy
for any given N by numerically integrating Eq. (3), and
also the explicit forms for aN and bN as a function ofN can
be obtained. The mean number of events close to the
maximum, for a finite but large sample of size N, is
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FIG. 1 (color online). The lines closer to the dashed lines correspond to larger values of N. (a) ��r; N� for N � 102 (blue), 103 (red),
and 104 (green), for the power-law distribution p�X� � � exp��X���X��1���, with � � 2. The dashed (black) line plots the Fréchet
distribution f1�r=bN�. (b) ��r; N� for exponential decay p�X� � �X��1 exp��X��. (i) For � � 1=2, with N � 103 (blue), 105 (red),
and 107 (green). The dashed (black) line plots the Gumbel distribution f2��r� aN�=bN�. (ii) For � � 2, with N � 103 (blue), 106

(red), and 109 (green). The dashed (black) line plots p�aN � r�. (c) ��r; N� for bounded distribution, p�X� � �a���a� X���1 for
X < a and p�X� � 0 for X 	 a, where a � 10. (i) For � � 3=2, with N � 102 (blue), 103 (red), and 104 (green). (ii) For � � 1=2,
with N � 10 (blue), 102 (red), and 103 (green). The dashed (black) lines plot p�a� r�.
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proportional to ��0; N�. In certain cases, r � 0 is part of
the scaling function and ��0; N� can be obtained from the
scaling form of ��r; N� by putting r � 0. However, some-
times r � 0 is not part of the scaling regime and ��0; N�
has to be computed separately from Eq. (3). For simplicity,
we consider only positive random variables.

Power-law tail.—Consider p�X���exp��X���=
X1��, where �> 0. In this case, aN � 0 and bN � N1=�.
Therefore, limiting ��r; N� is given by Eq. (5), with f�z�
belonging to the Fréchet class:

 f�z� 
 f1�z� �
� exp��z���

z1�� ; z 	 0: (7)

Figure 1(a) compares this limiting form with the results
obtained from Eq. (3) by evaluating the integration nu-
merically. Here, r � 0 is away from the scaling regime.
Thus, ��0; N� is obtained directly from Eq. (3),

 ��0; N� ���!N!1���2� 1=��

N1�1=�
: (8)

Faster than power law, but unbounded tail.—Consider
p�X� � �X��1 exp��X��, where � > 0. In this case aN �
�lnN�1=� and bN � ��1�lnN�1=��1. For very large and very
small r, the large N forms of the mean DOS have same
forms for all �, i.e., ��r; N� � Np�r� for r� aN , and
��r; N� � p�aN � r� for r
 aN . Thus, at r � 0

 ��0; N� ���!N!1p�aN� � �
N
�lnN�1�1=�; (9)

for all �. However, the scaling behaviors of ��r; N� are
very different for the three cases � < 1, � � 1, and � > 1.

Case I. � < 1.—As N ! 1, bN ! 1. Therefore, in the
scaling regime around r � aN (which, however, becomes
larger as N increases, as bN becomes larger), the limiting
��r; N� is again given by Eq. (5), but now f�z� belongs to
the Gumbel class:

 f�z� 
 f2�z� � exp��z� exp��z��: (10)

Panel (i) of Fig. 1(b) compares the limiting form with the
results obtained from Eq. (3) by numerical integration.

Case II. � � 1.—In this case bN � 1. In this borderline
case neither of the limiting forms, i.e., Eq. (5) and (6), are
reached in the large N limit. Instead, we find a completely
different behavior: ��r; N� � g�r� aN�, where the scaling
function

 g�z� � ez�1� �1� e�z�e�e
�z
�: (11)

Case III. � > 1.—As N ! 1, bN ! 0. Thus, ��r; N�
now converges to the other form given by Eq. (6), which is
compared in panel (ii) of Fig. 1(b), with the results ob-
tained from Eq. (3) by evaluating the integration
numerically.

Bounded tail.—Consider p�X� � �a���a� X���1 for
0<X < a, where �> 0, and p�X� � 0 otherwise. In this

case, aN � a and bN � aN�1=�. Therefore, again ��r; N�
now converges to the other form given by Eq. (6). The
comparison with Eq. (3) is illustrated in Fig. 1(c). Again,N
dependence of ��0; N� for largeN does not follow from the
limiting ��r; N�. This is obtained directly from Eq. (3),

 ��0; N� ���!N!1 ��=a���2� 1=��

N1�1=�
; for �> 1=2: (12)

To summarize the explicit results, when the tail of p�X�
is either power law or bounded, the convergence of ��r; N�
to the respective limits given by Eqs. (5) and (6) are fast,
as can be seen from Figs. 1(a) and 1(c), respectively.
However, in the intermediate situation, i.e., when p�X�
decays faster than power law but not bounded, the con-
vergence is slow, as can be seen from Fig. 1(b). In other
words, the more p�X� deviates from exp��X� in either
direction (slower and faster), ��r; N� converges more
quickly (with increasing N) to its limiting form. As N
increases, the mean number of events close to the maxi-
mum, which is proportional to ��0; N�, decreases faster for
p�X� with a broader tail [cf. Eqs. (8), (9), and (12)]. This is
also evident from the small r behavior of ��r; N� in the
scaling regime, i.e., from the peak to the left in Figs. 1(a)
and 1(b) [panel (i)]: For p�X� with a power-law tail,
��r; N� has an essential singular behavior exp��N=r��
for small r [cf. Eq. (7)], and for a stretched-exponential
tail (faster than power law but unbounded tail with � < 1),
as r decreases from aN in the scaling regime ��r; N�
decreases superexponentially exp�� exp��aN � r�=bN��
[cf. Eq. (10)]. On the contrary, for p�X� having faster
than exp��X� tail, there is crowding near the maximum
value (r � 0) [Figs. 1(b) [panel (ii)] and 1(c)].

Another measure of the loneliness of the maximum is
the gap between the maximum and the next highest value.
Let Q��jN� be the PDF of the gap being �. Clearly

 Q��jN� � N
Z 1
�1

p�z� ��pmax�z; N � 1�dz: (13)

In particular, when p�X� � exp��X�� for large X, we find
the limiting form

 Q��jN� ���!N!1 1

bN
exp���=bN�: (14)

Thus, the typical gap is of the order bN , which increases
(decreases) as N increases for � < 1 (� > 1), consistent
with the results obtained from the study of mean DOS.

So far, we have considered the case of IID random
variables. What would happen if the random variables
are correlated? For short-ranged correlation, one expects
the results from IID random variables to hold. However, for
a stationary Gaussian sequence (SGS), this holds even for
long-range (e.g., power-law) correlation. More precisely,
for SGS a rigorous theorem [11] states that if the correlator
C�n� 
 XiXi�n satisfies either limn!1C�n� lnn � 0 orP
1
n�1 C

2�n�<1, then the limiting distribution of the
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maximum [cf. Eq. (4)] is Gumbel [cf. Eq. (10)], and aN and
bN are the same as those in the case of independent
Gaussian random variables. Based on this theorem, one
therefore predicts that ��r; N� for large N should be inde-
pendent of the correlation function C�n� and hence would
be the same as that of Gaussian IID random variables. We
have indeed verified this prediction for SGSs with a power-
law correlation C�n� � �1� n2���=2, which are generated
using numerical simulation. We compute ��r; N� from
these sequences for different values of N and for each N
different values of �, and compare with the one obtained
by numerically integrating Eq. (3) for same N and using
p�X� � exp��X2=2�=

�������
2�
p

; while for smaller N they dif-
fer, for larger N the difference becomes unnoticeable [14].

How well do the mathematical results describe real
data? That is what we check last in this Letter, by compar-
ing against the reconstructed Yamal multimillennial sum-
mer temperature data by Hantemirov and Shiyatov [15].
The reconstructed data set consists of yearly mean summer
temperature anomalies (�T) of Yamal Peninsula of west-
ern Siberia, relative to the mean of the full reconstructed
series for 4000 years (2000 BC to AD 1996), which is
shown in Fig. 2(a). We divide the full time series into
blocks ofN years, and for each block (I) find the maximum
value of �T, and then (II) with respect to this maximum,
compute ��r; N� using Eq. (1). Finally, we find ��r; N� by
taking an average over all the blocks. The histograms in

Figs. 2(c) and 2(d) illustrate ��r; N�, computed by dividing
the full series into 40 blocks with 100 years of data in each
block, and four blocks with 1000 years of data in each
block, respectively. Now to compare with our results, we
first compute the distribution of �T from the full time
series, which is illustrated in Fig. 2(b) by histogram, along
with the solid line given by the Gaussian distribution. In
Figs. 2(c) and 2(d), the solid lines are computed using the
Gaussian distribution from Eq. (3), by performing exact
numerical integration, with N � 100 and 1000, respec-
tively. The dashed lines correspond to the limiting form
p�aN � r�, obtained in Eq. (6) for large N. The agree-
ments between them (dashed lines and solid lines) are
satisfactory.
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FIG. 2. (a) Yamal peninsula June through July mean tempera-
ture anomaly (�T) reconstruction series [15]. (b) The histogram
plots the distribution �T of the data shown in (a). The solid line
represents p��T� � exp���T2=2�=

�������
2�
p

. In (c) and (d), the
histograms plot the mean DOS relative to the maximum (ex-
cluding the maximum), computed by dividing the data into
blocks, where each block consists of N years. Solid lines are
calculated using the exact numerical integration in Eq. (3). The
dashed lines represent p�aN � r�, where aN � �2 lnN�1=2 �
�2 lnN��1=2�lnlnN � ln4��=2.
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