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We propose a model for the control of fixational eye movements using time-delayed random walks.
Fixational eye movements produce random displacements of the retinal image to prevent perceptual
fading. First, we demonstrate that a transition from persistent to antipersistent correlations occurs in data
recorded from a visual fixation task. Second, we propose and investigate a delayed random-walk model
and get, by comparison of the transition points, an estimate of the neurophysiological delay. Differences
between horizontal and vertical components of eye movements are found which can be explained
neurophysiologically. Finally, we compare our numerical results with analytic approximations.
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Visual perception of stationary scenes requires accurate
fixation on a target object. Paradoxically, our eyes perform
miniature (or fixational) eye movements involuntarily dur-
ing the act of fixation. Fixational eye movements (FEM)
counteract perceptual fading, which occurs in response to
artificially stabilized retinal input [1]. Recent evidence
suggests that FEM both modulate and are influenced by
diverse neural and behavioral processes ranging from ocu-
lomotor control [2,3], sensory bursting phenomena [4],
and perceptual transitions [5] to visual attention [6].
Therefore, a mathematical model of FEM can potentially
contribute specific predictions to various areas of cognitive
neuroscience.

In this Letter, we first study the correlations in high-
resolution time series of fixational eye movements re-
corded during exceptionally long fixation intervals.
Correlations are estimated using measures of lagged stan-
dard deviations [7,8] as well as detrended fluctuation
analysis (DFA) [8–10]. Second, we propose a model based
on the concept of time-delayed random walks [11–16]. We
show that the value of the time delay, which had to be
chosen for best agreement between model simulations and
experimental data, is highly compatible with our current
knowledge of the neural organization of the oculomotor
circuitry [17,18]. Finally, we compare our numerical re-
sults with analytical approximations.

In our experiment, we recorded the horizontal and ver-
tical eye movements during a fixation task, using a high-
speed video-based eye tracker with a sampling rate of Ts �
500 Hz (EyeLink-II, SR Research, Toronto, Canada) and
an instrument spatial resolution <0:01� visual angle.
Participants (the two authors and 20 students of the
University of Potsdam) were required to fixate a black
square (3� 3 pixels on a computer display or
7:2 arc min) on white background. Each participant per-
formed 30 trials with a duration of 20 seconds, while an
online check for eye blinks reduced loss of data. After
preprocessing, we obtained 622 valid trials. The horizontal

component of a typical trajectory of fixational eye move-
ments is shown in Fig. 1. FEM consist of three different
kinematic components, i.e., drift, tremor, and microsac-
cades [4]. Drift is generally believed to represent oculo-
motor noise. Tremor is a very small-amplitude (< 0:01�)
oscillatory component not resolved in video-based eye
tracking devices and is therefore neglected here.
Microsaccades represent ballistic small-amplitude move-
ments embedded in the drift component [3,6].

A fundamental problem of random walks is related to
the estimation of short and long range correlations [19].
The FEM data show statistical properties similar to the
trajectory of the center of gravity during quiet standing
[20,21]. An analysis of the scaling behavior [2,6,8,9,20] is
a basis for model building. As in earlier work [6,9], stan-
dard deviation analysis (SDA) [7,8] and detrended fluctua-
tion analysis (DFA) [9,10] reveal two different types of
scaling behavior on short and long time scale [Fig. 2(a) and
2(b)].

The SDA [8] is a measure of the lagged standard devia-
tion and is computed by

 D2�l� �
1

2�N � l�

XN�l
i�0

�x�i� l� � x�i� � �x�l��2; (1)

where x�i� denotes the ith data point of the horizontal
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FIG. 1. First five seconds of the horizontal component of the
eye trajectory during fixational eye movements. Microsaccades
are ballistic small-amplitude movements embedded in slower
movements.
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position signal. The mean value for the distance is denoted
by �x�l� � 1=N

PN
i x�i� l� � x�i�. To investigate power-

law behavior of the form D2�l� / l2�, we analyze log-log
plots of D�l� in �deg2� versus l in [ms] [Fig. 2(a)] and the
slope of D�l� [Fig. 2(c)]. The local slope is computed by
fitting a linear function to five consecutive points (running
average). Thus, the local � can directly be read off from the
plot in Fig. 2(c). For � � 0:5 we have an uncorrelated
signal, while for �< 0:5 the signal is antipersistent and for
�> 0:5 it is persistent. We find a transition between these
two regimes, which is indicated in the SDA by the sharp
trough at l � 100 ms [Fig. 2(c)].

For the DFA [8–10] we compute a velocity time series
from the eye-position data by v�i� � Ts�x�i	 1� � x�i��.
The detrended fluctuation analysis (DFA-p) is capable of
investigating scaling behavior in nonstationary data while
removing polynomial trends of order p� 1. It consists of
five steps: (a) performing a cumulative sum of the inves-
tigated data, (b) cutting the data of length L in Nl � bL=lc
segments � of length l where 2p	 1 
 l 
 L=10,
(c) fitting of the best polynomial trend y� of order p on
the data in each segment, (d) computing the mean of the
mean squared deviation of the data adjusted by the trend,
i.e.,

 F2�l� �
1

Nl

XNl
��1

1

l

Xl
i�1

�v���� 1�l	 i�� y��2; (2)

and (e) determining the exponent from log-log plots of F�l�
versus l [Fig. 2(b)] analogously to the SDA above.

Applying the DFA-2 to the horizontal eye-movement
data demonstrates persistent behavior on the short time
scale and antipersistent behavior on the long time scale
(Fig. 2) with a clear transition between the two regimes

[2,22]. This dynamical behavior is physiologically func-
tional. First, persistent behavior on the short time scale
enhances retinal image slip, which is needed to counteract
retinal adaptation in response to constant input. Second,
the antipersistent behavior on the long time scale stabilizes
the current fixation. As noted in [23], the estimation of the
numerical value of the lag at the transition point is gen-
erally overestimated by the DFA. Therefore, we use the
SDA for the estimation of the transition point. Removing
of all microsaccades (as in [2] ) and performing the same
analyses shows that the results for the correlations are not
specifically due to microsaccades.

Motivated by the delayed random-walk models for pos-
tural sway proposed by Ohira and Milton [13] and Yao, Yu,
and Essex [12] and the assumption that the antipersistent
behavior for the long time scale arises from a neural
control mechanism, we formulated a delayed random-
walk model for FEM. A basic problem is whether move-
ments are controlled on the level of eye position or eye
velocity. For our model we can exploit the fact that the
activity of oculomotor neurons [17,18] is given as the sum
of excitatory burst neurons (EBN) and tonic units (TU).
The firing rate of the EBN is related to active movements
independent of eye position; therefore, EBN activity de-
termines eye velocity. The activity of TU is proportional to
the fixation position relative to the center of the visual field
(eccentricity), i.e., TU serve a function in gaze holding.
During FEM, however, changes in absolute eye position
are negligible (i.e., less than 1�). As a consequence, we do
not expect systematic variations in TU activity. In our
model, TU activity can be approximated by an additional
noise source added to eye position.

We implement our model as a discrete map. First, we use
an autoregressive term for the EBN activity wi	1 � �1�
��wi to generate the persistent correlations at the short
time scale, created by the eye’s inertia. The second term, a
noise term �i, represents EBN baseline activity where �i
are uncorrelated Gaussian random numbers with h�ii � 0
and h�i�ji � �2�ij and � is the standard deviation of the
noise. A third term introduces negative feedback (with a
delay) in order to stabilize FEM and to generate antiper-
sistent behavior on the long time scale, �� tanh��wi�	�
[12]. The parameters are the physiological delay, 	, the
feedback strength, �, and a parameter for variation of the
steepness of the control function, �.

The influence of the EBN is added to the TU activity, an
additive noise term 
i with h
ii � 0 and h
i
ji � �2�ij,
where � is the standard deviation. Taken together, we can
write our model as

 

wi	1 � �1� ��wi 	 �i � � tanh��wi�	�;

xi	1 � xi 	 wi	1 	 
i:
(3)

In this model, all eye positions xi are stable because of the
lack of a systematic variation of TU activity with eccen-
tricity (see above). Moreover, it important to note that all
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FIG. 2. The scaling analyses for the data. (a) The scaling
behavior of the SDA. (b) Output of the DFA shows two scale
behavior. (c) The slope of the SDA shows a prominent trough at
l � 100 ms. (d) Slope of the DFA. The gray lines denote the
means of each participant, the black line the mean over all
participants.
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parameters of our model have direct physiological
interpretations.

Systems with delayed negative feedback typically pro-
duce oscillatory behavior [11,12,14,16]. Here, we consider
the case of low gain, where oscillations are not dominant
(but see [24] ). Different from postural sway data, we did
not find a third time scale, where the scaling exponent
tends to zero. Such a time scale with slope of zero is related
to the high-gain regime, which we do not consider here.

For numerical simulations, we simulated 200 000 iter-
ates, where one iteration step corresponds to 1 ms, and
analyzed the last 20 000 data points only, to exclude po-
tential transient effects. The DFA for the model is based on
the velocity time series generated from the position xi of
Eq. (3) as described for the eye-position data. A parameter
set that is appropriate to reproduce the scaling behavior of
the FEM data is � � 0:25, � � 0:15, � � 0:075, � �
0:35, and � � 1:1. For the horizontal component of the
FEM a time delay of 	hor: � 70 ms leads to optimal cor-
respondence between experimental data and model simu-
lations (Fig. 3). This result is in good agreement with our
current knowledge of the oculomotor circuitry [17,18]:
visual information entering the retina needs tp � 40 ms
to reach the superior colliculus (SC) [25], the top-level
control structure for saccadic eye movements in the brain
stem. Furthermore, stimulation of cells in the SC generates
an eye movement only tm � 20 ms later [26]. Therefore, a
lower bound for the (visually guided or external) control
loop is 	hor: � 60 ms. Additionally, we investigated the
vertical component of the eyes (not shown) by using the
same techniques. Interestingly, we obtained a smaller delay

of 	vert: � 40 ms for vertical FEM, if all other parameters
are fixed. This smaller numerical value is highly compat-
ible with the existence of an internal (i.e., not visual)
physiological control loop for vertical saccades [17] and
suggests independence between vertical and horizontal
FEM components.

Next, we present analytical approximations for the cor-
relations on the two time scales. For the short time scale we
estimate the scaling behavior from the slope of the graph
between lags 1 and 2, i.e.,

 2Hs �
logD

2�2�
D2�1�

log�2�
with D2�N� � h�xk	N � xk�

2i: (4)

Because measurement noise 
i and velocities wi	1 are
statistically independent, we obtain D2�1� � h�wk	1 	

k�

2i � hw2i 	 �2. We assume stationarity and set �0 �
1� �, i.e., hw2

k	1i � �02hw2
ki 	 �

2 	 �2htanh2��wk�	�i �
2��0hwk tanh��wk�	�i. We approximate tanh��wk�	� �
�wk�	. Numerically, we observe a strongly negative auto-
correlation function at lag 	. Therefore, we set
hwk tanh��wk�	�i � ��hw

2
ki. Thus, we obtain the equation

 hw2i �
�2

1� �02 � �2�2 � 2���0
: (5)

For D2�2� we iterate Eq. (3),
 

D2�2� � h�1� �0wk	1 	 �k	1 � � tanh��wk	1�	�

	 
k 	 
k	1�
2i:

We use the approximation for the tanh function again and
obtain D2�2� � �1� �0 	 �2�hw2i 	 2�2 	 �2. Taken to-
gether for the short time scale our approximation yields the
formula

 Hs �
1

2 log2
log

�
�1� �02 	 �2�hw2i 	 2�2 	 �2

hw2i 	 �2

�
; (6)

where hw2i is obtained from Eq. (5).
For the long time scale, we have to account for effects of

the delay term. Thus, we calculate the slope between lags 	
and 2	, i.e.,

 2Hl �
1

log�2	=	�
log
D2�2	�

D2�	�
: (7)

Generally, iteration of Eq. (3) gives

 D2�N� �
��XN

j�1

�0wk	j 	 �k	j � � tanh��wk	j�	�

	 
k	j

�
2
�
:

Here we assume that the major contributions toD2�N� arise
from terms with differences of l � 0, 1, 	� 1, 	, 		 1.
With hwk	1wki � �0hw2i and again the approximation for
tanh function we can write the mean square displacements
as D2�	� � 	� and D2�2	� � 2	�� 	� with � � �2 	
�2�02 	 1��2 	 ��02 	 �2�2 	 2�03 	 2�2�0�hw2i and
� � �4��0 	 2���2 	 �4��02 	 2��0�hw2i. Using these
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FIG. 3. The scaling analyses for the model with � � 0:25, � �
0:15, � � 0:075, � � 0:35 � � 1:1, and 	 � 70. To mimic
individual variations we added normal distributed parameter
variations with a standard deviation of 0:1 for � and � and
standard deviation of 0.02 for �, �, and � and introduced
deviations for 	 drawn from a binomial distribution with p �
0:5 and N � 20. (a) Scaling behavior estimated via SDA.
(b) Results from DFA. (c) Slope of the SDA plot. (d) Slope
analysis for DFA.
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abbreviations, we can write the approximation for the long
time scale as

 Hl �
1

2 log2
log

�
2t�� 	�

	�

�
: (8)

To check the validity of our analytical calculations, we
compare the results with numerical simulations. In
Fig. 4(a) we show the comparison of values of Hs for the
short time scale as a function of �. Around the chosen
value � � 0:25 the analytical approximation is in good
agreement with the numerical simulation. For the long time
scale we plot the dependence of Hl on � [Fig. 4(b)].
Qualitatively, analytical approximation and numerical re-
sults agree; however, the analytical results are closer to the
results obtained via DFA. Thus, the analytical calculations
confirm the parameter dependence of the scaling exponents
observed in the numerical simulations.

In summary, we replicated our previous results on a
transition from persistent to antipersistent behavior in fixa-
tional eye movements [2,9] for extraordinarily long fixa-
tion intervals with a duration of 20 s. As a starting point for
mathematical modeling, we investigated the transition
point between the two dynamical regimes and found a
pronounced trough in the SDA at the critical value for
the time lag. We introduced a nonlinear, delayed negative
feedback, which generated antipersistent behavior on the
long time scale in a low-gain regime. Our results were
checked with analytical calculations for the scaling expo-
nents. Time-delayed control is a neurophysiologically
highly plausible feature of the brain stem oculomotor
circuitry [17]. More specifically, our model could explain
the differences between the control of horizontal and ver-
tical eye movements.
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