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We evaluate the capability of reconstructing Fokker-Planck equations for an improved characterization
of electroencephalographic (EEG) recordings from epilepsy patients. We derive stochastic qualifiers of
brain dynamics that are based on specific characteristics of the Kramers-Moyal coefficients estimated
from the EEG. Analyzing long-lasting multichannel EEG recordings from eight patients suffering from
focal epilepsies we show that particularly the stochastic part of the dynamics can yield valuable
information for diagnostic purposes.
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The dynamics of many natural and man-made complex
systems exhibits deterministic and stochastic features. In
situations where the underlying equations of motion are
not known, a detailed quantitative description can never-
theless be achieved by applying time series analysis tech-
niques to experimentally acquired observables. When the
dynamics involves only a few degrees of freedom the
framework of nonlinear time series analysis [1,2] provides
quite powerful tools to characterize complex behavior,
which allows one to estimate the underlying equations of
motion from time series data. Over the past decades analy-
ses of electroencephalographic (EEG) time series have
provided valuable insight into the complex spatiotemporal
dynamics of physiological and pathophysiological brain
functions [3]. In epileptology, particularly nonlinear ap-
proaches were shown to allow an improved understanding
of intermittent dysfunctioning of the brain between epilep-
tic seizures and to provide potentially useful diagnostic
information [4]. Moreover, these techniques provided first
evidence for the existence of seizure precursors whose
unequivocal detection might lead to the development of
seizure prediction and prevention techniques [5]. Despite
the many promising findings there are a number of prob-
lems for which there are currently no satisfactory solutions.
This can be attributed to the fact that in many cases crucial
aspects of pathological brain dynamics must be regarded as
stochastic (high-dimensional) and thus, may not be cap-
tured when applying time series analysis techniques that
preferentially focus on the low-dimensional deterministic
part of the dynamics.

Dissipative dynamical systems under the influence of
noise can often be successfully modeled by a Fokker-
Planck or, equivalently, an associated Langevin equation

[6,7], which reads _x � D�1��x�t���
��������������������
D�2��x�t��

q
��t� in the

one-dimensional case. x�t� denotes the state of the system
and ��t� is a Gaussian white noise process which is as-
sumed to be uncorrelated, h��t���t0�i � ��t� t0�, with
vanishing mean, h��t�i � 0. The drift coefficient D�1� de-

scribes the deterministic part of the dynamics and the
diffusion coefficient D�2� determines the strength of the
driving noise force. If D�2� depends on the state x the
stochastic part is referred to as multiplicative dynamical
noise, otherwise as additive dynamical noise. The Fokker-
Planck equation is a special case of a more general evolu-
tion equation for continuous Markov processes, namely,
the Kramers-Moyal expansion, and the coefficients D�n�

can be defined in a statistical sense using the conditional
moments of the stochastic variable X�t� [8]:

 D�n��x; t� �
1

n!
lim
�!0

1

�
h�X�t� �� � X�t��nijX�t��x: (1)

In Refs. [9–11] an analysis technique has been intro-
duced that allows one to estimate drift and diffusion co-
efficients from time series data by evaluating the
conditional moments in Eq. (1) for finite time steps � and
then extrapolate to � � 0. This technique has been success-
fully applied in a variety of disciplines ranging from phys-
ics [12–18] to the biomedical domain [19–21].

In this Letter we show that, by using this approach, an
improved characterization of pathological brain dynamics
can be achieved by explicitly taking into account stochastic
parts of the dynamics. We retrospectively analyzed multi-
channel (20–60 recording sites), multiday (5–12 days)
EEG recordings from eight patients with pharmacoresist-
ant focal epilepsy who underwent evaluation for resective
therapy. EEG data were recorded from the cortex and from
within relevant structures of the brain, hence with a high
signal-to-noise ratio. Signals were sampled at 200 Hz using
a 16 bit analog-to-digital converter and filtered within a
frequency band of 0.53 to 85 Hz. After surgery all patients
achieved complete seizure control so the brain structure
responsible for seizure generation (epileptic focus) can be
assumed to be contained within the resected brain volume.

The method proposed in Refs. [9–11] requires the
brain dynamics to be Markovian (a process without mem-
ory), which we checked by evaluating the Chapman-
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Kolmogorov equation for the conditional probabilities
p�x�t� 2��jx�t�� [8]:

 p�x�t� 2��jx�t�� �
Z
dx�t� ��p�x�t� 2��jx�t

� ���p�x�t� ��jx�t��: (2)

We analyzed exemplary EEG time series recorded from
within the epileptic focus and from a distant brain region
during the seizure-free interval of one patient. For epoch
lengths ranging from about 2 to 8 min we observed that
Eq. (2) is approximately fulfilled for a minimum possible
time shift � � 1 (in units of the sampling interval) [22]. In
Fig. 1 we show typical examples of drift and diffusion
coefficients estimated from EEG time series. Both coeffi-
cients can be well approximated by low order polynomials.
As expected for this one-dimensional model D�1� indicates
an overall linear damping behavior. For EEG time series
recorded from within the epileptic focus we observed small
nonlinearities toward higher amplitude values, which is in
line with findings from studies using nonlinear time series
analysis techniques [4]. The behavior of D�2� indicates a
multiplicative influence of the noise. To test whether the
deviation from an additive behavior (i.e., D�2� � const:)
was caused by the finiteness of the time shift � [23] we
followed Refs. [24,25] and considered a Taylor expansion
of the second conditional moment. Using the estimated
values of D�1� and different constant diffusion coefficients

we observed that the influence of higher order terms in �
cannot explain the multiplicativity of the estimated second
coefficients.

We also estimated the fourth-order coefficient D�4�,
which allows one to determine whether the driving noise
process ��t� exhibits deviations from a Gaussian distribu-
tion [26]. Only if D�4� vanishes, ��t� is Gaussian and the
probability density function (PDF) of the process under
consideration evolves according to a Fokker-Planck equa-
tion [27]. For the EEG recorded from a distant brain region

 

FIG. 1. Estimated coefficients D�1�, D�2�, and D�4� for exem-
plary EEG time series (left: from a distant brain region; right:
from within the epileptic focus). Shown are estimates for time
series consisting of 100 000 data points (squares) as well as fits
with low order polynomials (black lines). Error bars indicate the
statistical error of the estimation of the averages according to
Eq. (1) for each value of x.
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FIG. 2. Comparison of the stationary PDF’s (a) and contour
plots of conditional PDF’s for � � 1 (b) and (c) for the EEG time
series [squares in (a), dashed lines in (b) and (c)] and time series
generated by integrating the associated Langevin equations
(straight lines). (a) left plot and (b): from a distant brain region;
(a) right plot and (c): from within the epileptic focus. Contour
plots were generated using an increment between contour lines
of 0.02 in (b) and 0.012 in (c).
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D�4� took on values slightly above zero but the magnitude
of this coefficient was less than one-twentieth in compari-
son to the second coefficient D�2�. In contrast, for the EEG
recorded from within the epileptic focus D�4� took on
values clearly above zero. These findings indicate that a
description of pathological brain dynamics by a one-
dimensional Fokker-Planck model may be inadequate.
This is further corroborated by our results obtained from
integrating the Langevin equation [29,30] using the esti-
mated functions D�1� and D�2� for both EEG time series
(Fig. 2). While both the stationary and the conditional
PDF’s of the integrated model and of the EEG time series
coincided quite well for the recording from a distant brain
region, we observed more pronounced deviations for the
recording from within the epileptic focus.

These findings clearly indicate that specific character-
istics of the estimated drift and diffusion coefficients al-
low one to differentiate between physiological and patho-
physiological activities. For this purpose we derived
different quantities from the estimated coefficients that
serve as stochastic qualifiers of epileptic brain dynamics
[22]. As an example, we here consider the range covered
by the values of the estimated coefficients R1;2 :�

jmax�D�1;2��x���min�D�1;2��x��j. We here only took into
account values of D�1;2� for which at least 100 data points
were available for the estimation procedure. For the multi-
channel, multiday EEG recordings from all patients we
performed a time resolved estimation of R1;2 using a

moving-window technique. Data windows were of size
N � 50 000 data points, and windows overlapped by
50%. This choice represents a compromise between suffi-
cient statistics for a reliable estimation of D�1;2� and tem-
poral resolution, which might be of interest for further EEG
analyses. We stress that the determination of R1;2 was done
fully automatically and without human interference.

In Fig. 3(a) we show a typical spatiotemporal distribu-
tion of R2 calculated for a multichannel EEG (52 contacts)
recorded during the seizure-free interval from a patient
with an epileptic focus located in the right hemisphere.
When comparing findings from the left and right brain
hemisphere we observed highest values of R2 confined to
regions close to or within the epileptic focus. We thus
expected that pathophysiological activities are reflected
by increased values of our measures.

Since these values showed only little variance over time
we calculated, for each contact, their temporal average,
(hR1;2it), and eventually averaged over all contacts c from
each hemisphere ( ~R1;2 :� hhR1;2itic). This allowed us to
further condense the information contained in the spatio-
temporal distribution of our stochastic qualifiers and to
investigate retrospectively whether they can provide diag-
nostically relevant information. In the following we refer to
the brain hemisphere containing the epileptogenic focus
(determined by the presurgical workup and by the post-
operative complete seizure control) as the focal side,
whereas the opposite hemisphere is denoted as the non-
focal side. In six out of eight patients ~R1 was higher on the

 

FIG. 3. (a) Time resolved estimates of R2 calculated from a multichannel EEG recording (approximately 19 h) of a patient suffering
from a right-sided focal epilepsy (patient F). (b) Implantation scheme of intracranial electrodes: hippocampal depth electrodes (10
contacts each, D), lateral (4–16 contacts, TL), and basal (4 contacts each, TB) strip electrodes. (c) Spatiotemporal means of R1 and R2

for all investigated patients. Black bars denote values from the focal and gray bars from the nonfocal hemisphere.
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focal side. Interestingly, we observed that ~R2 allowed
correct identification of the focal side in all patients
[Fig. 3(c)].

To conclude, we have investigated the applicability of a
time series analysis method that is based on the reconstruc-
tion of a Fokker-Planck equation from empirical data for
an improved characterization of epileptic brain dynamics.
For this purpose we studied long-lasting, multichannel
EEG time series that covered physiological and pathophy-
siological activities from the seizure-free interval of eight
patients suffering from focal epilepsies. Despite limitations
that can be attributed to the fact that EEG time series may
not entirely meet the prerequisites of the underlying theo-
retical framework, a one-dimensional Fokker-Planck
model appeared to be appropriate for a description of
physiological activities. It may not be possible, however,
to capture all aspects of pathophysiological activities in
such a model. Nevertheless, we were able to derive sto-
chastic qualifiers that allowed a more comprehensive char-
acterization of the epileptic process particularly when
focusing on the stochastic part of the dynamics. Thus,
even in cases where the dynamics is not generated by a
Langevin process but by a more complex process for which
the Markovian property is not fulfilled in a strict sense,
drift and diffusion coefficients appear to be quite useful
characterizing quantities [31]. We expect that our approach
along with further improvements can yield valuable infor-
mation for diagnostic purposes and can advance our under-
standing of the complicated dynamical system epileptic
brain.
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