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A simple microcanonical strategy for the simulation of first-order phase transitions is proposed. At
variance with flat-histogram methods, there is no iterative parameters optimization nor long waits for
tunneling between the ordered and the disordered phases. We test the method in the standard benchmark:
the Q-states Potts model (Q � 10 in two dimensions and Q � 4 in D � 3). We develop a cluster
algorithm for this model, obtaining accurate results for systems with more than 106 spins.
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First-order phase transitions [1] are hard to study by
means of Monte Carlo simulation [2], specially for large
system linear size L (or space dimension D). The intrinsic
problem is that, at a first-order phase transition, two (or
more) phases coexist. The simulated system tunnels be-
tween pure phases by building an interface of size L. The
free-energy cost of such a mixed configuration is �LD�1

(�: surface tension), the interface is built with probability
exp���LD�1� and the natural time scale for the simulation
grows with L as exp��LD�1�. This disaster is called ex-
ponential critical slowing down (ECSD).

No cure is known for ECSD in canonical simulations
(cluster methods [3,4] do not help, yet see [5]). In the
multicanonical ensemble [6] the probability for the energy
density is constant, at least in the energy gap eo < e < ed

(eo and ed: energy densities of the coexisting low-
temperature ordered phase and high-temperature disor-
dered phase). In these flat-histogram methods [6–9], the
canonical probability minimum in the energy gap ( /
exp���LD�1�) is filled by means of an iterative parameter
optimization. A random walk is performed in the gap, that
still suffers ECSD [10]. For the standard benchmark (the
Q � 10; D � 2 Potts model [11]), the barrier of 104 spins
was reached in 1992 [6]. The largest simulated system (to
our knowledge) had 4� 104 spins [7].

ECSD in flat-histogram simulations is probably under-
stood [10]: on its way from ed to eo, the system undergoes
several (four in D � 2) ‘‘transitions.’’ First comes the
condensation transition [10,12], at a distance of order
L�D=�D�1� from ed, where a macroscopic droplet of the
ordered phase is nucleated. Decreasing e, the droplet grows
to the point that, for periodic boundary conditions, it
reduces its surface energy by becoming a strip [13]; see
Fig. 1 (in D � 3, the droplet becomes a cylinder, then a
slab [14]). At lower e the strip becomes a droplet of
disordered phase. Finally, at the condensation transition
close to eo, we encounter the homogeneous ordered phase.

Here we present a method to simulate first order tran-
sitions without iterative parameter optimization nor energy
random walk. We extend the configuration space as in

hybrid Monte Carlo calculations [15]: to our N variables,
�i (named spins here, but they could be atomic positions)
we add N real momenta, pi. The microcanonical ensemble
for the f�i; pig offers two advantages. First, microcanon-
ical simulations [16] are feasible at any value of e within
the gap. Second, we obtain fluctuation dissipation relations
[Eqs. (5)–(7)] where the (inverse) temperature �̂, a func-
tion of e and the spins, plays a role dual to that of e in the
canonical ensemble. The e dependence of the mean value
h�̂ie, interpolated from a grid as it is almost constant over
the gap, characterizes the transition. We test the method in
the Q-states Potts model, for which we develop a cluster
algorithm. We handle systems with 106 spins forQ � 10 in
D � 2 and for Q � 4 in D � 3 [17].

Let U be the spin Hamiltonian. Our total energy is

 E �
XN
i�1

p2
i

2
�U; �e 	 E=N; u 	 U=N�: (1)

In the canonical ensemble, the fpig are a trivial Gaussian
bath decoupled from the spins. Note that, at inverse tem-
perature �, one has hei� � hui� � 1=�2��.

Microcanonically, the entropy density s�e;N� is given
by (

P
f�ig: summation over spin configurations)

 exp�Ns�e;N�� �
Z 1
�1

YN
i�1

dpi
X
f�ig

��Ne� E�; (2)

or, integrating out the fpig using Dirac’s delta function,

 exp�Ns�e;N�� �
�2�N�N=2

N��N=2�

X
f�ig

!�e; u; N�; (3)

[!�e; u; N� 	 �e� u��N�2�=2��e� u�]. The step function,
��e� u�, enforces e > u. The microcanonical average at
fixed e of any function of e and the spins, O�e; f�ig�, is

 hOie 	
X
f�ig

O�e; f�ig�!�e; u; N�
�X
f�ig

!�e; u; N�: (4)

The Metropolis simulation of Eq. (4), is straightforward.
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Calculating ds=de from Eq. (3) we learn that [18]

 

ds�e;N�
de

� h�̂�e; f�ig�ie; �̂�e; f�ig� 	
N � 2

2N�e� u�
:

(5)

Fluctuation dissipation follows by derivating Eq. (4):

 

dhOie
de

�

�
@O
@e

�
e
� N�hO�̂ie � hOieh�̂ie�: (6)

As in the canonical case [19], an integral version of (6)
allows to extrapolate hOie0 from simulations at e 
 e0:

 hOie0 �
hO�e0; f�ig�!�e

0; u; N�=!�e; u; N�ie
h!�e0; u; N�=!�e; u; N�ie

: (7)

For e < e0, configurations with e < u < e0, suppressed by a
factor �e0 � u�N=2�1, are ignored in (7). Since we are

limited in practice to je� e0j �
�������������������������
hu2ie � hui2e

p
=

jdhuie=dej � N
�1=2, the restriction e 
 e0 can be dropped,

as it is numerically negligible.
Let I�e1; e2; �� be the e integral of �h�̂ie � �� from e1 to

e2. The canonical probability density for e, P�L�� �e� /
exp�N�s�e; N� � �e��, follows from

 logP�L�� �e2� � logP�L�� �e1� � NI�e1; e2; ��: (8)

In the thermodynamically stable region (i.e., dh�̂ie=de <
0), there is a single root of h�̂ie � �, at the maximum of
P�L�� . But (see Fig. 2) in the energy gap h�̂ie has a maxi-
mum and a minimum (L-dependent spinodals [1]), and
there are several roots of h�̂ie � �. The rightmost (left-
most) root is edL��� (eoL���), a local maximum of P�L��
corresponding to the disordered (ordered) phase. We define
e
L��� as the second rightmost root of h�̂ie � �.

At the finite-system (inverse) critical temperature, �Lc ,
one has [20] P�L��Lc �e

d
L��

L
c �� � P�L��Lc �e

o
L��

L
c ��, which is

equivalent, Eq. (8) and Ref. [21], to Maxwell’s construc-
tion:

 0 � I�eoL��
L
c �; e

d
L��

L
c �; �Lc �; (9)

(for large N, �1c � �Lc / 1=N [22]). Actually, at fixed e in
the gap, also h�̂ie tends to�1c for largeN. In the strip phase
it converges faster than �Lc ; see Table I.

In a cubic box the surface tension is estimated as [25]

 �L � NI�e
L��
L
c �; e

d
L��

L
c �; �Lc �=�2LD�1�: (10)

L! 1 extrapolations �1 � �L / 1=L [26] are popular.
As for the specific heat, for N ! 1 the inverse function

of the canonical hei� is the microcanonical h�̂ie:

 

dhui�
d�

�

�
1

2h�̂i2e
�

1

dh�̂ie=de

�
e�hei�

	 CL�e�: (11)

For largeN, edL��
L
c �, eoL��

L
c �,CL�edL��

L
c ��,CL�edL��

L
c �� tend

to ed, eo, or the specific heat of the coexisting phases (we
lack analytical hints about convergence rates).

We now specialize to the Potts model [11]. The spins
�i � 0; 1; . . . ; Q� 1, live in the N � LD nodes of a (hy-
per)cubic lattice of side L with periodic boundary condi-
tions, and interaction U � �

P
hiji��i;�j (summation

restricted to lattice nearest neighbors).
For the cluster method, we write our weight as

~!�e; u; �; N� exp���Nu� [see (4)], with � a tunable pa-
rameter and ~!�e; u; �; N� � !�e; u; N� exp��Nu�. We ex-
press exp���Nu� using bond variables [27] (adjacent
spins connected by an occupied bond belong to the same
cluster [2,28]). The conditional probability of bonds given
the f�ig is ‘‘adjacent spins are in the same cluster only if
equal and, in that case, with probability 1� exp����.’’
That of f�ig given the clusters is ‘‘all spins in a cluster are
equal, the weight of a given assignment being
~!�e; u; �; N�.’’ We accept a single-cluster [4] flip with
Metropolis probability p�e; �� � minf1; ~!�e; ufinal; �; N�=
~!�e; uinitial; �; N�g. Equations (5)–(7) tell that � � h�̂ie
maximizes p�e; �� (a short Metropolis run provides a first
� estimate). We obtain hp�e; ��ie > 0:99 for e � ed, and
still hp�e; ��ie�eo > 0:78.

We simulated the (Q � 10; D � 2) Potts model [23], for
L � 32, 64, 128, 256, 512, and 1024, sampling h�̂ie at 30
points evenly distributed in �1:416 66 � e � �0:45. For
L � 512, we made 15 extra simulations to resolve the

 

FIG. 1 (color online). L � 1024 equi-
librium configurations for the ferromag-
netic Q � 10; D � 2 Potts model with
periodic boundary conditions, at the two
sides of the droplet-strip transition,
namely, e � �0:809 (left) and e �
�0:8 (right). For details see text and
Fig. 2.
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narrow spinodal peaks (26 extra points for L � 1024). For
each e, we performed 2� 106 elementary Monte Carlo
steps (EMCS) [29], dropping the first 10% for thermaliza-
tion [30]. A similar computation was carried out for the
(Q � 4; D � 3) Potts model (for details see Table I and
[31]).

Our h�̂ie in D � 2 is shown in Fig. 2. Data reweighting
(7) were used only to reconstruct the narrow spinodal
peaks. To find the roots of h�̂ie � �, or to calculate the
integrals in Eqs. (9) and (10), we interpolated h�̂ie using a
cubic spline [32]. For L 
 512 the strip-droplet transitions

produce two ‘‘jumps’’ in h�̂ie, causing oscillations in the
interpolation (Gibbs phenomenon), cured by either of two
interpolation schemes; see Fig. 2.

We obtain �Lc , �L, eoL��
L
c �, edL��

L
c �, CL�eoL��

L
c ��, and

CL�edL��
L
c �� from the interpolation of h�̂ie and of

dh�̂ie=de; see (6). The jackknife method [28] was used
to estimate statistical errors (the ith block is obtained
interpolating the ith jackknife blocks for h�̂ie). There are
also interpolation and integration errors. Fortunately, errors
of order � in eoL��

L
c � or edL��

L
c � yield errors of order �2 in

�Lc : the main error in �Lc is the quadrature error for h�̂ie
divided by the latent heat. On the other hand, e
L��

L
c � is

near to the droplet-strip transition, and an error on it does
have an impact on �L.

In Table I are our results for (D � 2; Q � 10) and the
known large L limits. A fit for c in �1c � �Lc � c=LD [22]
is unacceptable for L 
 32 (�D=d:o:f: � 14:32=4), but
good for L 
 64 (�D=d:o:f: � 1:77=3): our accuracy al-
lows to detect subleading corrections. A fit eoL��

L
c � � e

o �
b1=L

D works only for L 
 256 (�2=d:o:f: � 1:90=2; for
edL��

L
c � we get �2=d:o:f: � 1:41=2). However, �strip;L (see

caption of Table I) is compatible with �1c for L 
 256.
Then, the simplest strategy to get �1c and the latent heat is
(1) for L large enough to display a strip phase, locate it
with short runs, (2) get �strip;L accurately, and (3) find the
leftmost (rightmost) root for h�̂ie � �strip;L.

As for �L, the inequality �1 � 0:047 350 5 [24] (equal-
ity under the hypothesis of complete wetting) was violated
by 1=L extrapolations performed with L � 100 [6]. The
data for L � 256 in Table I extrapolate above 0.047 350 5
but drop below for L 
 512. Indeed, the consistency of our
results for �Lc implies that the integration error for h�̂ie is
(at most) 2� 10�6 for L � 1024. Hence, the integration
error for �L is at most 10�3. Adding it to the difference
between the linear and the steplike interpolation, Fig. 2, we

 

FIG. 2 (color online). Excess of h�̂ie over �L�1c vs e, for the
Q � 10; D � 2 Potts model and several system sizes. Bottom:
magnification for L 
 512. The flat central region is the strip
phase (the strip width varies at fixed surface free energy). Lines
(shown for L � 1024) are the two interpolations used for L 

512. We connect three independent cubic splines, in the strip
phase and in its sides, either by a linear function or by a steplike
1=100 power. Differences among the two interpolations are used
to estimate the error induced by the uncertainty in the location of
the strip-droplet transitions.

TABLE I. Size dependent estimates of quantities characterizing the first-order transition [�L, from (10)], for the Q � 10; D � 2
Potts model (top) and Q � 4, D � 3 (bottom). Errors are jackknife’s. Also shown is �strip;L: h�̂ie��0:95 (D � 2) or h�̂ie��0:764 443

(D � 3). Superscript A�B�: results obtained with the linear (steplike) interpolation scheme; see Fig. 2.

LD �Lc �L �eoL��
L
c � �edL��

L
c � �CL�eoL��

L
c � �CL�edL��

L
c �� �strip;L

322 1.423 082 (17) 0.051 74(9) 1.331 8(2) 0.573 6(3) 5.13(13) 3.99(7) 1.420 28(7)
642 1.425 287 (9) 0.050 24(1 1) 1.322 0(2) 0.599 9(2) 6.44(17) 5.78(19) 1.424 79(4)

1282 1.425 859 (7) 0.049 225 (14) 1.316 76(1 6) 0.611 64(1 6) 7.4(3) 7.8(3) 1.425 92(2)
2562 1.426 021 (5) 0.048 8(2) 1.314 78(8) 0.615 78(8) 8.0(3) 8.7(4) 1.426 06(2)
5122�A� 1.426 051 (4) 0.047 3(3) 1.313 92(6) 0.617 10(4) 8.6(4) 9.1(4) 1.426 048 (12)
5122�B� 1.426 048 (4) 0.046 7(4) 1.313 90(6) 0.617 08(5) 8.6(4) 9.1(4) 1.426 048 (12)

10242�A� 1.426 059 9(19) 0.043 0(3) 1.313 75(3) 0.617 48(3) 9.7(5) 8.7(4) 1.426 066 (9)
10242�B� 1.426 060 0(18) 0.042 4(2) 1.313 75(3) 0.617 48(3) 9.7(5) 8.7(4) 1.426 066 (9)

12 1.426 062 4 . . . [23] �1 � 0:047 35 [24] 1.313 636 . . . [23] 0.617 58 . . . [23] � � � � � � 1.426 062 4 . . . [23]
83 0.627 394 (7) 0.005 591 (10) 1.155 3(7) 0.514 12(1 2) 23.0(5) 3.856 (16) 0.626 25(4)

163 0.628 440 (3) 0.007 596 (6) 1.118 9(4) 0.518 18(5) 30.1(8) 3.620 (13) 0.626 687 (15)
323 0.628 595 7(10) 0.009 824 (6) 1.107 51(1 5) 0.522 066 (16) 34.2(9) 4.019 (17) 0.627 889 (6)
643 0.628 613 3(7) 0.011 557 (6) 1.105 42(8) 0.522 831 (8) 33.2(9) 4.11(2) 0.628 621 (3)

1283�A� 0.628 623 7(5) 0.011 778 (7) 1.105 48(3) 0.522 93(2) 35.4(9) 4.25(17) 0.628 6206 (10)
1283�B� 0.628 623 9(5) 0.01 1674 (9) 1.105 49(2) 0.522 93(2) 35.4(9) 4.25(17) 0.628 620 6(10)

PRL 98, 137207 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
30 MARCH 2007

137207-3



obtain �L�1024 � 0:043�2�, which is slightly below
0.047 350 5.

As for �Q � 4; D � 3�, see Table I, �strip;L has con-
verged (within accuracy) for L 
 64. Hence, our pre-
ferred estimate is �1c � 0:628 620 6�10�, that may be
compared with Janke and Kapler’s �1c � 0:628 63�2�
[17]. Accordingly, we find eo��strip;L� � �1:105 37�4�,
ed��strip;L� � �0:522 91�2�, CL�e

o��strip;L�� � 35:4�9�,
and CL�ed��strip;L�� � 4:24�18�. The reader will note that
�L�128
c is far too high (for instance, from the �2=d:o:f: of

the extrapolation �Lc � �1c � cL�D). Therefore, the inte-
gration error is�4� 10�6 (larger than the statistical one),
which provides a bound for the error in the surface tension:
�L�128 � 0:011 8�4�. This is compatible with �L�64, and
provides a reasonable �1.

We propose a microcanonical strategy for the
Monte Carlo simulation of first-order phase transitions.
The method is demonstrated in the standard benchmarks:
the Q � 10; D � 2 Potts model (where we compare with
exact results) and the Q � 4; D � 3 Potts model. For both,
we obtain accurate results in systems with more than 106

spins. Envisaged applications include first-order transitions
with quenched disorder [17,33], colloid crystallization
[34], peptide aggregation [35] and the condensation tran-
sition [12].
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