Microcanonical Approach to the Simulation of First-Order Phase Transitions

V. Martin-Mayor

Departamento de Fı´sica Teo´rica I, Facultad de Ciencias Fı´sicas, Universidad Complutense, 28040 Madrid, Spain and Instituto de Biocomputacio´n y Fı´sica de Sistemas Complejos (BIFI), Zaragoza, Spain (Received 23 November 2006; revised manuscript received 26 January 2007; published 30 March 2007)

A simple microcanonical strategy for the simulation of first-order phase transitions is proposed. At variance with flat-histogram methods, there is no iterative parameters optimization nor long waits for tunneling between the ordered and the disordered phases. We test the method in the standard benchmark: the *Q*-states Potts model ($Q = 10$ in two dimensions and $Q = 4$ in $D = 3$). We develop a cluster algorithm for this model, obtaining accurate results for systems with more than $10⁶$ spins.

DOI: [10.1103/PhysRevLett.98.137207](http://dx.doi.org/10.1103/PhysRevLett.98.137207) PACS numbers: 75.40.Mg, 05.50.+q, 64.60.Cn

First-order phase transitions [\[1](#page-3-0)] are hard to study by means of Monte Carlo simulation [\[2](#page-3-1)], specially for large system linear size *L* (or space dimension *D*). The intrinsic problem is that, at a first-order phase transition, two (or more) phases coexist. The simulated system tunnels between pure phases by building an interface of size *L*. The free-energy cost of such a mixed configuration is ΣL^{D-1} (Σ) : surface tension), the interface is built with probability $exp[-\Sigma L^{D-1}]$ and the natural time scale for the simulation grows with *L* as $\exp[\Sigma L^{D-1}]$. This disaster is called *exponential* critical slowing down (ECSD).

No cure is known for ECSD in canonical simulations (cluster methods $[3,4]$ $[3,4]$ $[3,4]$ $[3,4]$ do not help, yet see $[5]$ $[5]$). In the multicanonical ensemble [[6](#page-3-5)] the probability for the energy density is constant, at least in the energy gap $e^c < e < e^d$ (*eo* and *ed*: energy densities of the coexisting lowtemperature ordered phase and high-temperature disordered phase). In these flat-histogram methods $[6-9]$ $[6-9]$, the canonical probability minimum in the energy gap (\propto $exp[-\Sigma L^{D-1}]$) is filled by means of an iterative parameter optimization. A random walk is performed in the gap, that still suffers ECSD [[10](#page-3-7)]. For the standard benchmark (the $Q = 10, D = 2$ Potts model [[11](#page-3-8)]), the barrier of 10⁴ spins was reached in 1992 [\[6](#page-3-5)]. The largest simulated system (to our knowledge) had 4×10^4 spins [[7\]](#page-3-9).

ECSD in flat-histogram simulations is probably understood $[10]$ $[10]$ $[10]$: on its way from e^d to e^o , the system undergoes several (four in $D = 2$) "transitions." First comes the condensation transition $[10,12]$ $[10,12]$ $[10,12]$ $[10,12]$ $[10,12]$, at a distance of order $L^{-D/(D+1)}$ from *e^d*, where a macroscopic droplet of the ordered phase is nucleated. Decreasing *e*, the droplet grows to the point that, for periodic boundary conditions, it reduces its surface energy by becoming a strip [[13](#page-3-11)]; see Fig. [1](#page-1-0) (in $D = 3$, the droplet becomes a cylinder, then a slab [[14](#page-3-12)]). At lower *e* the strip becomes a droplet of *disordered* phase. Finally, at the condensation transition close to e^o , we encounter the homogeneous ordered phase.

Here we present a method to simulate first order transitions without iterative parameter optimization nor energy random walk. We extend the configuration space as in hybrid Monte Carlo calculations [[15](#page-3-13)]: to our *N* variables, σ_i (named spins here, but they could be atomic positions) we add *N* real momenta, *pi*. The *microcanonical* ensemble for the $\{\sigma_i, p_i\}$ offers two advantages. First, microcanonical simulations [[16](#page-3-14)] are feasible at any value of *e* within the gap. Second, we obtain fluctuation dissipation relations [Eqs. $(5)-(7)$ $(5)-(7)$ $(5)-(7)$ $(5)-(7)$ $(5)-(7)$] where the (inverse) temperature $\hat{\beta}$, a function of *e* and the spins, plays a role dual to that of *e* in the canonical ensemble. The *e* dependence of the mean value $\langle \hat{\beta} \rangle_e$, interpolated from a grid as it is almost constant over the gap, characterizes the transition. We test the method in the *Q*-states Potts model, for which we develop a cluster algorithm. We handle systems with 10^6 spins for $Q = 10$ in $D = 2$ and for $Q = 4$ in $D = 3$ [[17](#page-3-15)].

Let *U* be the spin Hamiltonian. Our total energy is

$$
\mathcal{E} = \sum_{i=1}^{N} \frac{p_i^2}{2} + U, \qquad (e \equiv \mathcal{E}/N, u \equiv U/N). \tag{1}
$$

In the canonical ensemble, the $\{p_i\}$ are a trivial Gaussian bath decoupled from the spins. Note that, at inverse temperature β , one has $\langle e \rangle_{\beta} = \langle u \rangle_{\beta} + 1/(2\beta)$.

Microcanonically, the entropy density $s(e, N)$ is given by $(\sum_{\{\sigma_i\}}$: summation over spin configurations)

$$
\exp[Ns(e,N)] = \int_{-\infty}^{\infty} \prod_{i=1}^{N} dp_i \sum_{\{\sigma_i\}} \delta(Ne - \mathcal{E}), \qquad (2)
$$

or, integrating out the $\{p_i\}$ using Dirac's delta function,

$$
\exp[Ns(e, N)] = \frac{(2\pi N)^{N/2}}{N\Gamma(N/2)} \sum_{\{\sigma_i\}} \omega(e, u, N), \quad (3)
$$

 $[\omega(e, u, N)] \equiv (e - u)^{(N-2)/2} \theta(e - u)$. The step function, $\theta(e - u)$, enforces $e > u$. The microcanonical average at fixed *e* of any function of *e* and the spins, $O(e, \{\sigma_i\})$, is

$$
\langle O \rangle_e \equiv \sum_{\{\sigma_i\}} O(e, \{\sigma_i\}) \omega(e, u, N) / \sum_{\{\sigma_i\}} \omega(e, u, N). \tag{4}
$$

The Metropolis simulation of Eq. [\(4](#page-0-0)), is straightforward.

0031-9007/07/98(13)/137207(4) 137207-1 © 2007 The American Physical Society

Calculating ds/de from Eq. ([3\)](#page-0-1) we learn that [[18](#page-3-16)]

$$
\frac{ds(e, N)}{de} = \langle \hat{\beta}(e; \{\sigma_i\}) \rangle_e, \qquad \hat{\beta}(e; \{\sigma_i\}) \equiv \frac{N-2}{2N(e-u)}.
$$
\n(5)

Fluctuation dissipation follows by derivating Eq. ([4](#page-0-0)):

$$
\frac{d\langle O \rangle_e}{de} = \left\langle \frac{\partial O}{\partial e} \right\rangle_e + N[\langle O\hat{\beta} \rangle_e - \langle O \rangle_e \langle \hat{\beta} \rangle_e]. \tag{6}
$$

As in the canonical case $[19]$ $[19]$ $[19]$, an integral version of (6) allows to extrapolate $\langle O \rangle_{e'}$ from simulations at $e \geq e'$:

$$
\langle O \rangle_{e'} = \frac{\langle O(e'; \{\sigma_i\}) \omega(e', u, N) / \omega(e, u, N) \rangle_e}{\langle \omega(e', u, N) / \omega(e, u, N) \rangle_e}.
$$
 (7)

For $e < e'$, configurations with $e < u < e'$, suppressed by a factor $(e^{t} - u)^{N/2-1}$, are ignored in ([7\)](#page-1-2). Since we are limited in practice to $|e - e'| \le \sqrt{\langle u^2 \rangle_e - \langle u \rangle_e^2}/$ $|d\langle u \rangle_e / de| \sim N^{-1/2}$, the restriction $e \ge e'$ can be dropped, as it is numerically negligible.

Let *I*(*e*₁*, e*₂*,* β) be the *e* integral of ($\langle \hat{\beta} \rangle_e - \beta$) from *e*₁ to *e*₂. The canonical probability density for *e*, $P_{\beta}^{(L)}(e) \propto$ $\exp[N(s(e, N) - \beta e)],$ follows from

$$
\log P_{\beta}^{(L)}(e_2) - \log P_{\beta}^{(L)}(e_1) = NI(e_1, e_2, \beta). \tag{8}
$$

In the thermodynamically stable region (i.e., $d\langle \hat{\beta} \rangle_e / de$ 0), there is a single root of $\langle \hat{\beta} \rangle_e = \beta$, at the maximum of $P_{\beta}^{(L)}$. But (see Fig. [2](#page-2-0)) in the energy gap $\langle \hat{\beta} \rangle_e$ has a maximum and a minimum (*L*-dependent spinodals [\[1\]](#page-3-0)), and there are several roots of $\langle \hat{\beta} \rangle_e = \beta$. The rightmost (leftmost) root is $e_L^d(\beta)$ ($e_L^o(\beta)$), a local maximum of $P_\beta^{(L)}$ corresponding to the disordered (ordered) phase. We define $e_L^*(\beta)$ as the *second rightmost* root of $\langle \hat{\beta} \rangle_e = \beta$.

At the finite-system (inverse) critical temperature, β_c^L , one has $[20]$ $[20]$ $[20]$ $P_{\beta_c^L}^{(L)}(e_L^d(\beta_c^L)) = P_{\beta_c^L}^{(L)}(e_L^o(\beta_c^L))$, which is equivalent, Eq. ([8\)](#page-1-4) and Ref. [\[21\]](#page-3-19), to Maxwell's construction:

$$
0 = I(e_L^o(\beta_c^L), e_L^d(\beta_c^L), \beta_c^L), \tag{9}
$$

(for large *N*, $\beta_c^{\infty} - \beta_c^L \propto 1/N$ [\[22\]](#page-3-20)). Actually, at fixed *e* in the gap, also $\langle \hat{\beta} \rangle_e$ tends to β_c^{∞} for large *N*. In the strip phase it converges faster than β_c^L ; see Table I.

In a cubic box the surface tension is estimated as $[25]$

$$
\Sigma^{L} = NI(e_L^*(\beta_c^L), e_L^d(\beta_c^L), \beta_c^L)/(2L^{D-1}).
$$
 (10)

 $L \rightarrow \infty$ extrapolations $\Sigma^{\infty} - \Sigma^{L} \propto 1/L$ [[26](#page-3-22)] are popular.

As for the specific heat, for $N \rightarrow \infty$ the inverse function of the canonical $\langle e \rangle_\beta$ is the microcanonical $\langle \hat{\beta} \rangle_e$:

$$
\frac{d\langle u \rangle_{\beta}}{d\beta} \approx \left[\frac{1}{2\langle \hat{\beta} \rangle_e^2} + \frac{1}{d\langle \hat{\beta} \rangle_e / de} \right]_{e = \langle e \rangle_{\beta}} \equiv C_L(e). \tag{11}
$$

For large $N, e^d_L(\beta^L_c), e^o_L(\beta^L_c), C_L(e^d_L(\beta^L_c)), C_L(e^d_L(\beta^L_c))$ tend to e^d , e^o , or the specific heat of the coexisting phases (we lack analytical hints about convergence rates).

We now specialize to the Potts model $[11]$ $[11]$ $[11]$. The spins $\sigma_i = 0, 1, \ldots, Q - 1$, live in the $N = L^D$ nodes of a (hyper)cubic lattice of side *L* with periodic boundary conditions, and interaction $U = -\sum_{\langle i j \rangle} \delta_{\sigma_i, \sigma_j}$ (summation restricted to lattice nearest neighbors).

For the cluster method, we write our weight as $\tilde{\omega}(e, u, \kappa, N)$ exp $[-\kappa N u]$ [see ([4\)](#page-0-0)], with κ a tunable parameter and $\tilde{\omega}(e, u, \kappa, N) = \omega(e, u, N) \exp[\kappa N u]$. We express $exp[-\kappa N u]$ using bond variables [[27](#page-3-23)] (adjacent spins connected by an *occupied* bond belong to the same *cluster* [[2,](#page-3-1)[28\]](#page-3-24)). The conditional probability of bonds *given the* $\{\sigma_i\}$ is "adjacent spins are in the same cluster only if equal and, in that case, with probability $1 - \exp[-\kappa]$." That of $\{\sigma_i\}$ *given the clusters* is "all spins in a cluster are equal, the weight of a given assignment being $\tilde{\omega}(e, u, \kappa, N)$." We accept a single-cluster [\[4\]](#page-3-3) flip with Metropolis probability $p(e, \kappa) = \min\{1, \tilde{\omega}(e, u^{\text{final}}, \kappa, N)/\}$ $\tilde{\omega}(e, u^{\text{initial}}, \kappa, N)$. Equations [\(5](#page-1-1))–([7\)](#page-1-2) tell that $\kappa = \langle \hat{\beta} \rangle_e$ maximizes $p(e, \kappa)$ (a short Metropolis run provides a first κ estimate). We obtain $\langle p(e, \kappa) \rangle_e > 0.99$ for $e \leq e^d$, and still $\langle p(e, \kappa) \rangle_{e=e^o} > 0.78$.

We simulated the $(Q = 10, D = 2)$ Potts model [\[23\]](#page-3-25), for $L = 32, 64, 128, 256, 512, \text{ and } 1024, \text{ sampling } \langle \hat{\beta} \rangle_e \text{ at } 30$ points evenly distributed in $-1.41666 \le e \le -0.45$. For $L = 512$, we made 15 extra simulations to resolve the

FIG. 1 (color online). $L = 1024$ equilibrium configurations for the ferromagnetic $Q = 10, D = 2$ Potts model with periodic boundary conditions, at the two sides of the droplet-strip transition, namely, $e = -0.809$ (left) and $e =$ -0*:*8 (right). For details see text and Fig. [2.](#page-2-0)

FIG. 2 (color online). Excess of $\langle \hat{\beta} \rangle_e$ over $\beta_c^{L=\infty}$ vs *e*, for the $Q = 10, D = 2$ Potts model and several system sizes. Bottom: magnification for $L \geq 512$. The flat central region is the strip phase (the strip width varies at fixed surface free energy). Lines (shown for $L = 1024$) are the two interpolations used for $L \geq$ 512. We connect three independent cubic splines, in the strip phase and in its sides, either by a linear function or by a steplike 1/100 power. Differences among the two interpolations are used to estimate the error induced by the uncertainty in the location of the strip-droplet transitions.

narrow spinodal peaks (26 extra points for $L = 1024$). For each *e*, we performed 2×10^6 elementary Monte Carlo steps (EMCS) [\[29\]](#page-3-26), dropping the first 10% for thermalization [[30](#page-3-27)]. A similar computation was carried out for the $(Q = 4, D = 3)$ Potts model (for details see Table I and [\[31\]](#page-3-28)).

Our $\langle \hat{\beta} \rangle_e$ in $D = 2$ is shown in Fig. [2.](#page-2-0) Data reweighting [\(7\)](#page-1-2) were used only to reconstruct the narrow spinodal peaks. To find the roots of $\langle \hat{\beta} \rangle_e = \beta$, or to calculate the integrals in Eqs. [\(9](#page-1-5)) and ([10](#page-1-6)), we interpolated $\langle \hat{\beta} \rangle_e$ using a cubic spline [\[32\]](#page-3-29). For $L \geq 512$ the strip-droplet transitions

produce two "jumps" in $\langle \hat{\beta} \rangle_e$, causing oscillations in the interpolation (Gibbs phenomenon), cured by either of two interpolation schemes; see Fig. [2.](#page-2-0)

We obtain β_c^L , Σ^L , $e_L^o(\beta_c^L)$, $e_L^d(\beta_c^L)$, $C_L(e_L^o(\beta_c^L))$, and $C_L(e_L^d(\beta_c^L))$ from the interpolation of $\langle \hat{\beta} \rangle_e$ and of $d\langle \hat{\beta} \rangle_e/de$; see ([6\)](#page-1-3). The jackknife method [\[28\]](#page-3-24) was used to estimate statistical errors (the *i*th block is obtained interpolating the *i*th jackknife blocks for $\langle \hat{\beta} \rangle_e$). There are also interpolation and integration errors. Fortunately, errors of order ϵ in $e_L^o(\beta_c^L)$ or $e_L^d(\beta_c^L)$ yield errors of order ϵ^2 in β_c^L : the main error in β_c^L is the quadrature error for $\langle \hat{\beta} \rangle_e$ divided by the latent heat. On the other hand, $e^*_{L}(\beta_c^L)$ is near to the droplet-strip transition, and an error on it does have an impact on Σ_L .

In Table I are our results for $(D = 2, Q = 10)$ and the known large *L* limits. A fit for c in $\beta_c^{\infty} - \beta_c^L = c/L^D$ [\[22\]](#page-3-20) is unacceptable for $L \ge 32$ ($\chi^D/\text{d.o.f.} = 14.32/4$), but good for $L \ge 64$ ($\chi^D/\text{d.o.f.} = 1.77/3$): our accuracy allows to detect subleading corrections. A fit $e_L^o(\beta_c^L) - e^o =$ b_1/L^D works only for $L \ge 256$ ($\chi^2/\text{d.o.f.} = 1.90/2$; for $e^d_L(\beta_c^L)$ we get $\chi^2/\text{d.o.f.} = 1.41/2$). However, $\beta^{\text{strip},L}$ (see caption of Table I) is compatible with β_c^{∞} for $L \ge 256$. Then, the simplest strategy to get β_c^{∞} and the latent heat is (1) for *L* large enough to display a strip phase, locate it with short runs, (2) get $\beta^{strip,L}$ accurately, and (3) find the leftmost (rightmost) root for $\langle \hat{\beta} \rangle_e = \beta^{\text{strip},L}$.

As for Σ^L , the inequality $\Sigma^{\infty} \le 0.0473505$ [\[24](#page-3-30)] (equality under the hypothesis of complete wetting) was violated by $1/L$ extrapolations performed with $L \le 100$ [\[6\]](#page-3-5). The data for $L \le 256$ in Table I extrapolate above 0.047 350 5 but drop below for $L \geq 512$. Indeed, the consistency of our results for β_c^L implies that the integration error for $\langle \hat{\beta} \rangle_e$ is (at most) 2×10^{-6} for $L = 1024$. Hence, the integration error for Σ_L is at most 10^{-3} . Adding it to the difference between the linear and the steplike interpolation, Fig. [2](#page-2-0), we

TABLE I. Size dependent estimates of quantities characterizing the first-order transition $[\Sigma^L$, from [\(10\)](#page-1-6)], for the $Q = 10, D = 2$ Potts model (top) and $Q = 4$, $D = 3$ (bottom). Errors are jackknife's. Also shown is $\beta^{\text{strip},L}$: $\langle \hat{\beta} \rangle_{e=-0.95}$ ($D = 2$) or $\langle \hat{\beta} \rangle_{e=-0.764\,443}$ $(D = 3)$. Superscript $A(B)$: results obtained with the linear (steplike) interpolation scheme; see Fig. [2.](#page-2-0)

L^D	β_c^L	Σ^L	$-e_{L}^{o}(\beta_c^L)$	$-e_{L}^{d}(\beta_c^L)$	$-C_{L}(e_{L}^{o}(\beta_{c}^{L}))$	$-C_{L}(e_{L}^{d}(\beta_{c}^{L}))$	$\beta^{\text{strip},L}$
32^{2}	1.423082(17)	0.05174(9)	1.3318(2)	0.5736(3)	5.13(13)	3.99(7)	1.42028(7)
64^{2}	1.425287(9)	0.05024(11)	1.3220(2)	0.5999(2)	6.44(17)	5.78(19)	1.42479(4)
128^2	1.425859(7)	0.049225(14)	1.31676(16)	0.61164(16)	7.4(3)	7.8(3)	1.42592(2)
256^2	1.426021(5)	0.0488(2)	1.31478(8)	0.61578(8)	8.0(3)	8.7(4)	1.42606(2)
$512^{2(A)}$	1.426051(4)	0.0473(3)	1.31392(6)	0.61710(4)	8.6(4)	9.1(4)	1.426048(12)
$512^{2(B)}$	1.426048(4)	0.0467(4)	1.31390(6)	0.61708(5)	8.6(4)	9.1(4)	1.426 048 (12)
$1024^{2(A)}$	1.4260599(19)	0.0430(3)	1.31375(3)	0.61748(3)	9.7(5)	8.7(4)	1.426 066 (9)
$1024^{2(B)}$	1.4260600(18)	0.0424(2)	1.31375(3)	0.61748(3)	9.7(5)	8.7(4)	1.426 066 (9)
∞^2	1.4260624 [23]	$\Sigma^{\infty} \le 0.04735$ [24]	1.313636 [23]	0.61758 [23]	\cdots	\cdots	1.4260624 [23]
8 ³	0.627394(7)	0.005591(10)	1.1553(7)	0.51412(12)	23.0(5)	3.856(16)	0.62625(4)
16^3	0.628440(3)	0.007596(6)	1.1189(4)	0.51818(5)	30.1(8)	3.620(13)	0.626687(15)
32^{3}	0.6285957(10)	0.009824(6)	1.10751(15)	0.522066(16)	34.2(9)	4.019(17)	0.627889(6)
64^{3}	0.6286133(7)	0.011557(6)	1.105 42(8)	0.522831(8)	33.2(9)	4.11(2)	0.628621(3)
$128^{3(A)}$	0.6286237(5)	0.011778(7)	1.10548(3)	0.52293(2)	35.4(9)	4.25(17)	0.6286206(10)
$128^{3(B)}$	0.6286239(5)	0.011674(9)	1.10549(2)	0.52293(2)	35.4(9)	4.25(17)	0.6286206(10)

obtain $\Sigma^{L=1024} = 0.043(2)$, which is slightly below 0.047 350 5.

As for $(Q = 4, D = 3)$, see Table I, $\beta^{\text{strip},L}$ has converged (within accuracy) for $L \ge 64$. Hence, our preferred estimate is $\beta_c^{\infty} = 0.6286206(10)$, that may be compared with Janke and Kapler's $\beta_c^{\infty} = 0.62863(2)$ [\[17\]](#page-3-15). Accordingly, we find $e^{o}(\beta^{strip,L}) = -1.10537(4)$, $e^{d}(\beta^{\text{strip},L}) = -$ 0.522 91(2), $C_L(e^o(\beta^{\text{strip},L})) = 35.4(9),$ and $C_L(e^d(\beta^{strip,L})) = 4.24(18)$. The reader will note that $\beta_c^{L=128}$ is far too high (for instance, from the $\chi^2/\text{d.o.f.}$ of the extrapolation $\beta_c^L = \beta_c^{\infty} + cL^{-D}$). Therefore, the integration error is \sim 4 \times 10⁻⁶ (larger than the statistical one), which provides a bound for the error in the surface tension: $\Sigma^{L=128} = 0.0118(4)$. This is compatible with $\Sigma^{L=64}$, and provides a reasonable Σ^{∞} .

We propose a microcanonical strategy for the Monte Carlo simulation of first-order phase transitions. The method is demonstrated in the standard benchmarks: the $Q = 10, D = 2$ Potts model (where we compare with exact results) and the $Q = 4$, $D = 3$ Potts model. For both, we obtain accurate results in systems with more than $10⁶$ spins. Envisaged applications include first-order transitions with quenched disorder [[17](#page-3-15),[33](#page-3-31)], colloid crystallization [\[34\]](#page-3-32), peptide aggregation [\[35\]](#page-3-33) and the condensation transition $[12]$ $[12]$ $[12]$.

We thank for discussions L. A. Fernandez (who also helped with figures and C code), L.G. Macdowell, W. Janke, G. Parisi, and P. Verrocchio, and BIFI and RTN3 for computer time. We were partly supported by BSCH-UCM and by MEC (Spain) through Contracts No. BFM2003-08532, No. FIS2004-05073, and No. FIS2006-08533.

- [1] J. D. Gunton, M. S. Miguel, and P. S. Sahni, in *Phase Transitions and Critical Phenomena*, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1983), Vol. 8; K. Binder, Rep. Prog. Phys. **50**, 783 (1987).
- [2] D. P. Landau and K. Binder, *A Guide to Monte Carlo Simulations in Statistical Physics* (Cambridge University, Cambridge, 2000); A. D. Sokal, in *Functional Integration: Basics and Applications*, edited by C. DeWitt-Morette, P. Cartier, and A. Folacci (Plenum, New York, 1997).
- [3] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. **58**, 86 (1987).
- [4] U. Wolff, Phys. Rev. Lett. **62**, 361 (1989).
- [5] J. Machta *et al.*, Phys. Rev. E **54**, 1332 (1996).
- [6] B. A. Berg and T. Neuhaus, Phys. Rev. Lett. **68**, 9 (1992).
- [7] F. Wang and D. P. Landau, Phys. Rev. Lett. **86**, 2050 (2001); Phys. Rev. E **64**, 056101 (2001).
- [8] Q. Yan and J. J. de Pablo, Phys. Rev. Lett. **90**, 035701 (2003).
- [9] J. Lee, Phys. Rev. Lett. **71**, 211 (1993); W. Janke and S. Kappler, Phys. Rev. Lett. **74**, 212 (1995); Y. Wu *et al.*, Phys. Rev. E **72**, 046704 (2005); S. Trebst, D. A. Huse, and

M. Troyer, Phys. Rev. E **70**, 046701 (2004); S. Reynal and H. T. Diep, Phys. Rev. E **72**, 056710 (2005); J. Viana Lopes, M. D. Costa, J. M. B. Lopes dos Santos, and R. Toral, Phys. Rev. E **74**, 046702 (2006).

- [10] T. Neuhaus and J. S. Hager, J. Stat. Phys. **113**, 47 (2003).
- [11] F. Y. Wu, Rev. Mod. Phys. **54**, 235 (1982).
- [12] M. Biskup, L. Chayes, and R. Kotecky´, Europhys. Lett. **60**, 21 (2002); K. Binder, Physica (Amsterdam) **319A**, 99 (2003); L. G. MacDowell, P. Virnau, M. Müller, and K. Binder, J. Chem. Phys. **120**, 5293 (2004); A. Nußbaumer, E. Bittner, T. Neuhaus, and W. Janke, Europhys. Lett. **75**, 716 (2006).
- [13] K. T. Leung and R. K. P. Zia, J. Phys. A **23**, 4593 (1990).
- [14] L.G. MacDowell, V.K. Shen, and J.R. Errington, J. Chem. Phys. **125**, 034705 (2006).
- [15] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Phys. Lett. B **195**, 216 (1987).
- [16] R. Lustig, J. Chem. Phys. **109**, 8816 (1998).
- [17] C. Chatelain, B. Berche, W. Janke, and P.-E. Berche, Nucl. Phys. **B719**, 275 (2005).
- [1[8\]](#page-3-34) In [8], Eq. [\(5](#page-1-1)) was approximated as $ds/de \approx 1/(1/\hat{\beta})_e$
- [19] M. Falcione *et al.*, Phys. Lett. B **108**, 331 (1982); A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. **61**, 2635 (1988).
- [20] M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B **34**, 1841 (1986); J. Lee and J. M. Kosterlitz, Phys. Rev. Lett. **65**, 137 (1990).
- [21] W. Janke, Nucl. Phys. B, Proc. Suppl. **63**, 631 (1998).
- [22] C. Borgs and R. Kotecky´, Phys. Rev. Lett. **68**, 1734 (1992).
- [23] R. J. Baxter, J. Phys. C **6**, L445 (1973).
- [24] C. Borgs and W. Janke, J. Phys. I (France) **2**, 2011 (1992).
- [25] In the strip phase (Fig. [1](#page-1-0)) *two* interfaces form; hence, [\[26\]](#page-3-22) $P_{\beta_c^L}^{(L)}(e_L^d(\hat{\beta_c^L}))/P_{\beta_c^L}^{(L)}(e_L^*(\beta_c^L)) = \exp[2\Sigma_L L^{D-1}].$
- [26] K. Binder, Phys. Rev. A 25, 1699 (1982).
- [27] R. G. Edwards and A. D. Sokal, Phys. Rev. D **38**, 2009 (1988).
- [28] See, e.g., D. Amit and V. Martin-Mayor, *Field Theory, the Renormalization Group and Critical Phenomena* (World Scientific, Singapore, 2005), 3rd ed.
- [29] Our EMCS was max $\{10, N/(\langle \mathcal{N} \rangle_e \langle p(e, \kappa) \rangle_e)\}$ cluster flip attempts. $\mathcal N$ is the number of spins in the traced cluster $(\langle \mathcal{N} \rangle_{e^d})$ is *N* independent, but $\langle \mathcal{N} \rangle_{e^o} \propto N$). Every EMCS we flip on average at least *N* spins.
- [30] The largest (in EMCS) *exponential* autocorrelation times, for $\hat{\beta}$ and the squared magnetization, arise at the dropletstrip transition: $\{\tau_{\hat{\beta}}, \tau_{M^2}/100\} = \{85(8), 26.7(7)\}^{L=256}$, $\{174(7), 136(3)\}\n^{L=512}$, and $\{176(6), 411(8)\}\n^{L=1024}$.
- [31] V. Martin-Mayor (to be published).
- [32] Not the so-called natural spline. We fixed the derivative at the first (last) *e* value, from a 3 points parabolic fit.
- [33] J. Cardy and J. L. Jacobsen, Phys. Rev. Lett. **79**, 4063 (1997); H. G. Ballesteros *et al.*, Phys. Rev. B **61**, 3215 (2000).
- [34] L.A. Fernandez, V. Martin-Mayor, and P. Verrocchio, Phys. Rev. Lett. **98**, 085702 (2007).
- [35] C. Junghans, M. Bachmann, and W. Janke, Phys. Rev. Lett. **97**, 218103 (2006).