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We study the magnetic susceptibility of one-dimensional S � 1=2 antiferromagnets containing non-
magnetic impurities which cut the chain into finite segments. For the susceptibility of long anisotropic
Heisenberg chain segments with open boundaries we derive a parameter-free result at low temperatures
using field-theory methods and the Bethe ansatz. The analytical result is verified by comparing with
quantum Monte Carlo calculations. We then show that the partitioning of the chain into finite segments
can explain the Curie-like contribution observed in recent experiments on Sr2Cu1�xPdxO3��. Possible
additional paramagnetic impurities seem to play only a minor role.
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Measurements of the magnetic susceptiblity, �, on anti-
ferromagnetics at low temperatures, T, often reveal a
(Curie) term � / 1=T. This is usually associated with
paramagnetic impurities (free spins). For one-dimensional
S � 1=2 systems, however, a second mechanism exists
which leads to a contribution with somewhat similar T
dependence. Nonmagnetic impurities can cut the chain
into finite segments with essentially free boundaries. At
T=J� 1=L (J being the exchange constant) a segment
with odd length L will lock into its doublet ground state
yielding also a 1=T contribution [1–4]. However, the be-
havior is considerably more complicated at higher T. As
we show, fitting data to a Curie form for a limited range of
T can lead to an underestimate of the impurity concentra-
tion by as much as a factor of 10. In general, the different T
dependence could make it possible to distinguish this type
of impurity from paramagnetic ones providing useful
structural information.

These results are relevant for materials like Sr2CuO3��
which is known to be an almost ideal realization of the
spin-1=2 Heisenberg chain with a nearest-neighbor cou-
pling constant J� 2200 K and a low Néel temperature
TN � 5 K� 0:002J [5,6]. Measurements of the magnetic
susceptibility have revealed a Curie contribution which
could be dramatically reduced by annealing. The Curie
term therefore is believed to be mainly caused by excess
oxygen [5,6]. Recently, susceptibility measurements have
also been reported on Sr2Cu1�xPdxO3�� with Pd serving as
a nonmagnetic impurity [7].

In this Letter we show that these susceptibility data can
be explained by taking the segmentation of the chain due to
the nonmagnetic impurities into account properly without
including any additional paramagnetic impurities. To this
end we derive a parameter-free analytical result for the
susceptibility of an anisotropic Heisenberg chain with
finite length and open boundary conditions (OBCs) at
low temperatures using field-theory methods. This extends
and generalizes previous results in the scaling limit [2,3]

and for the boundary susceptibility in the thermodynamic
limit [8–11]. We will verify our analytical result using
quantum Monte Carlo (QMC) calculations.

We consider an anisotropic spin-1=2 Heisenberg chain
consisting of segments with length L and OBCs

 H � J
XL�1
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Here, � parameterizes the exchange anisotropy. We as-
sume that T � TN so that interchain couplings can be
safely ignored. As argued at the end of this Letter,
longer-range interactions which could bridge between the
chain segments can be neglected as well in the parameter
regime we are interested in. For a concentration of chain
breaks p the average chain length is given by �L � 1=p� 1
and the averaged susceptibility by [12]

 �p � p2
X
L

L	1� p
L�	L
: (2)

We now calculate the susceptibility �	L
 �
h	
P
iS
z
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2i=	LT
 in the low T large L limit using field-
theory methods. We start with the Hamiltonian (1) in the
scaling limit, i.e., ignoring irrelevant operators. The
Hamiltonian is then equivalent to a free boson model [13]
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v
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Here � is a bosonic field obeying the standard commuta-
tion rule ��	x
;�	x0
� � i�	x� x0
 with � � v�1@t�.
The velocity v is a known function of the anisotropy �.
Using the mode expansion for OBCs [2]
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where R is the compactification radius of the bosonic field,
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the Hamiltonian (3) can also be expressed as

 H �
�v
KL

S2
z � hSz �

�v
L

X1
n�1

n	aynan � 1=2
: (5)

Here an is a bosonic annihilation operator, Sz an integer
(half-integer) for L even (odd), and h the magnetic field.
K—the so called Luttinger parameter—is related to the
compactification radius by K � 1=	2�R2
 and is a known
function of anisotropy � as well. The susceptibility in the
scaling limit is then given by
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For LT=v! 0 and L even �s �
2
LT exp�� �v

KLT�, whereas
for L odd �s � 	4LT
�1. For LT=v! 1 the thermody-
namic limit result �s � K=	2�v
 is recovered. Corrections
to scaling occur due to irrelevant bulk and boundary op-
erators. The leading bulk irrelevant operator for 0< � � 1
is due to umklapp scattering yielding the following correc-
tion to (3)

 �H � �1

Z L

0
dx cos	2�=R
; (7)

with �1 being the umklapp scattering amplitude. To obtain
� to first order in the operator (7) for L and T finite the
expectation value hexp	2i�=R
i has to be calculated.
Using the mode expansion (4) this expectation value splits
into an Sz (zero mode) and an oscillator part. Upon using
the cumulant theorem for bosonic modes we obtain
hexp	2i�=R
i � hexp	2i�=R
iSz exp	�2h��iosc:=R

2


with
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Introducing a cutoff � for the zero temperature part in (8)
and using

P
1
l�1 z

l=l � � ln	1� z
 for jzj< 1 we obtain
the following correction to (6)
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Here�	x
 is the Dedekind eta-function, �1	u; q
 the elliptic
theta function of the first kind [14] and ~�1 � �2K�1. For
K < 3=2 the integral in (9) is convergent, the cutoff can be
dropped, and the last line becomes equal to one. An addi-

tional correction arises due to the presence of an irrelevant
boundary operator. In essence, this operator changes the
length of the chain L to some effective length L� a [2].
Replacing L by L� a in the exponentials in (6) and
expanding to lowest order in a yields

 ��2 � ��vag1	exp���v=	KLT
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=	KT2L3
 (11)
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For K > 3=2 we isolate the cutoff dependence by subtract-
ing the Taylor expand of the integrand in (9) to first non-
vanishing order in y, and then take �! 0, yielding a
convergent integral. The cutoff dependent term has exactly
the same form as (11). We can therefore think of a in (11)
as a parameter incorporating both contributions. In the
thermodynamic limit g1	e

��v=	KLT

 ! K2T2L2=	2�2v2

and ��2 ! Ka=	2�vL
. In this limit we can compare the
field-theory result with a recent calculation of the boundary
susceptibility based on the Bethe ansatz [9,10] leading to

 a � 2�1=2 sin��K=	4K � 4
�= cos��=	4K � 4
�: (13)

Because the amplitude ~�1 is known exactly as well [10,15],
the obtained result is parameter-free. In Fig. 1 a compari-
son between this field-theory result and QMC data for � �
3=4 is shown and in the left inset the corrections to the
scaling limit (6) due to the leading irrelevant bulk and
boundary operator are visualized. More generally, we al-
ways find excellent agreement if T=J & 0:1 and L * 10.
The range of validity can be extended in principle by
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FIG. 1 (color online). QMC data for � � 3=4 and L � 99 (red
squares), L � 100 (black dots) compared to the field-theory
result derived here (green solid lines). The blue dashed line
denotes � � �bulk � �B=L [see Eqs. (148, 149) in [10]]. Left
inset: Corrections to scaling for even length chains and � � 3=4.
QMC data are represented by symbols, the field theory by the
green lines. Right inset: Same as main figure for � � 1 with a �
5:8 and �bulk, �B as obtained in [8,15].
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including terms in higher order perturbation theory in �1.
However, if T=v� 1=L it is justified to separate � into a
bulk, �bulk, and a boundary contribution, �B, and to per-
form the thermodynamic limit for each of them separately.
A combination of this result [10] (blue dashed line in
Fig. 1) with the result derived in this letter yields an
excellent parameter-free description of the susceptibility
for anisotropic chains of finite length up to T � J=2.

For K � 1 (� � 1) perturbation theory alone is not
sufficient because umklapp scattering becomes marginal.
In this case the coupling constant ~�1 has to be replaced by a
renormalization group (RG) improved running coupling
constant [15,16]. ~�1 then becomes a function of the two
length scales L and v=T. For small enough energies the
smaller scale will always dominate and the running cou-
pling constant becomes ~�1	L; v=T
 � g=4 with [15]

 1=g� ln	g
=2 � ln	
���������
2=�

p
e1=4�	 min�L; v=T�
: (14)

where 	 is the Euler constant. ��1 in the isotropic case is
therefore given by (9) with the last line dropped and ~�1

replaced by ~�1	L; v=T
. Furthermore, K in (6) should be
replaced by 1� g	L; T
=2 so that KL in the exponentials
gets replaced by L	1� g=2� a=L
. For this case a is not
known and we will use it as a fitting parameter. This way
we obtain excellent agreement if T=J & 0:1 and L * 10
(see right inset of Fig. 1). At LT � v the corrections to the
scaling formula (6) in the isotropic case due to the marginal
interaction can also be understood as follows. In this limit
the most important correction to (6) arises from the cor-
rection to the excitation energy of the lowest excited states
with Sz � 1, E! 	�v=L
�1� g	L
�, [17] correspond-
ing to the replacement 1=K ! 1� g	L
 in (6). Here g	L

is given by (14) but with min �L; v=T� simply replaced
by L.

These analytical results, supplemented by numerical
data for L & 10, can be used to calculate the averaged
susceptibility (2) at low temperatures. In addition, we have
calculated �	L
 numerically for all L 2 �1; 100� and cer-
tain additional L up to L � 1000 at various temperatures.
An interpolation and extrapolation was then used to obtain
�	L
 for all lengths up to L � 5000 at a given temperature
[18]. This allows us to reliably calculate �p (2) for impu-
rity concentrations p * 0:2% ( �L & 500).

Experimental data for the susceptibility of the quasi one-
dimensional compounds Sr2Cu1�xPdxO3�� have been an-
alyzed in [5–7] by decomposing it into � � �0 � �C �
�inf :. Here �0 represents a constant part due to core dia-
magnetism and Van Vleck paramagnetism, �C a Curie
term, and �inf : the susceptibility (per unit length) of the
infinite S � 1=2 Heisenberg chain. However, our results
show that nonmagnetic impurities (chain breaks) have a
quite different effect than paramagnetic impurities. In the
extreme low-T limit, T � pv, chain breaks will lead to
1=T behavior with a strength reduced from that which
would arise from the same density of paramagnetic impu-

rities by the fraction of chains of odd length, 	1� p
=	2�
p
 � 1=2. In the opposite limit pv� T (but T still� J),
chain breaks lead to a correction to the pure result of
�p=�12T ln	2:9J=T
� corresponding to an ‘‘effective para-
magnetic impurity concentration’’ of �p=�3 ln	2:9J=T
�
which can be� p for T � J. This behavior is illustrated
in Fig. 2.

It has been shown that the Curie-like contribution to the
susceptibility of Sr2CuO3�� can be significantly reduced
by annealing under Ar atmosphere indicating that this
contribution is mostly due to excess oxygen [19]. We
expect the additional interstitial oxygen ions to be in a
O2� ionization state. Each oxygen ion would then dope
two holes into the chains. If these holes are immobile they
effectively act like chain breaks. It has been pointed out
that the next-nearest-neighbor coupling is not that small,
J2 � J=16 � 140 K [20]. Whereas we expect this irrele-
vant coupling to cause only small corrections to the sus-
ceptibility of an isolated chain segment the fact that it can
bridge a chain break could be significant. A first order
perturbative calculation, however, shows that the correc-
tion to the averaged susceptibility is given by ��p �
pJ2�2

p. We can therefore ignore both interactions as long
as T � max	pJ2; J?
 making the model discussed here
applicable. As shown in the inset of Fig. 3 it is indeed
possible to explain the data in [5] for the unannealed
sample using a 0.6% concentration of chain breaks. If our
picture is correct the amount of excess oxygen is signifi-
cantly larger than assumed in [5], 0.06%.

The Sr2Cu1�xPdxO3�� samples used in [7] were not
annealed. This complicates the analysis of the susceptibil-
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FIG. 2 (color online). T�p for p � 0:01, 0.03, 0.05, 0.07, 0.1
from bottom to top (black dots with dashed lines being a guide to
the eye). The blue solid lines denote the value 	p=4
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	1� p
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 reached in the limit T � pv. Inset: Same
data for T�p with subsequent curves shifted by 0.01 compared
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� (red dashed lines) reached in the
opposite limit.
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ity data because excess oxygen again leads to chain breaks
in addition to those caused by the nonmagnetic Pd ions.
The amount of excess oxygen hereby seems to vary sig-
nificantly from sample to sample. This is most apparent
when comparing the measured susceptibilities for x �
0:5% and x � 1% which are almost identical apart from
a small constant shift. We therefore treat the impurity
concentration p as a fitting parameter. Results where we
used J � 2200 K and a gyromagnetic factor g � 2 are
shown in Fig. 3 and Table I. The figure clearly shows
that the susceptibility data are indeed quite different from
what would be expected for paramagnetic impurities. Most
of the data are taken in the nontrivial crossover regime
pv� T and are well described by our theory. Note, that the
deviations at low temperatures are expected because the

suppression of the susceptibility due to interchain and next-
nearest-neighbor interactions is not taken into account in
our model. For x � 0:005 and 0.01 the effective impurity
concentrations p are larger than the nominal Pd concen-
tration. p� x roughly coincides with the number of chain
breaks in the ‘‘as grown’’ Sr2CuO3�� supporting our pic-
ture of additional chain breaks due to excess oxygen. For
x � 0:03, however, p is smaller than the nominal Pd
concentration. Possible explanations are that for larger
doping levels some of the Pd ions go in interstitially instead
of replacing Cu ions or that the sample exhibits some sort
of phase separation. Future measurements on annealed
Sr2Cu1�xPdxO3�� samples would be helpful to clarify
some of these issues.
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FIG. 3 (color online). Measured susceptibility T	�� �0
 for
Sr2Cu1�xPdxO3�� with x � 0:5%, 1%, 3% (crosses from bottom
to top) where a constant �0 (see Table I) has been subtracted.
The green dots represent the best theoretical fit with p as in
Table I. Subsequent curves are shifted by 3� 10�3. The blue
solid lines represent 	p=4
	1� p
=	2� p
 and the red dashed
lines T�bulk � p=�12 ln	2:9J=T
�. Note that fits � �
�0 � �inf : � ppara=	4T
 in the regime T > 50 K would be simi-
lar to the red dashed lines with effective paramagnetic impurity
concentrations ppara � p=�3 ln	2:9J=T
� an order of magnitude
smaller than the nominal Pd concentrations. Inset: Same for as
grown sample of Sr2CuO3�� from Ref. [5].

TABLE I. Concentration x of Pd ions in experiment compared
to impurity concentration p and constant contribution �0 yield-
ing the best theoretical fit. The first line corresponds to the as
grown sample of Sr2CuO3�� from Ref. [5].

x (Exp.) p (Theory) �0 [emu/mol]

0.0 0.006 �7:42� 10�5

0.005 0.012 �7:7� 10�5

0.01 0.014 �7:5� 10�5

0.03 0.024 �7:5� 10�5
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