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We generalize the stochastic path integral formalism by considering Hamiltonian dynamics in the
presence of general Markovian noise. Kramers’ solution of the activation rate for escape over a barrier is
generalized for non-Gaussian driving noise in both the overdamped and underdamped limit. We apply our
general results to a Josephson junction detector measuring the electron counting statistics of a mesoscopic
conductor. The activation rate dependence on the third current cumulant includes an additional term
originating from the backaction of the measurement circuit.
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Detecting electron counting statistics has become a ma-
jor experimental challenge in mesoscopic physics. First
attempts to measure non-Gaussian effects in current noise
have revealed that the detection problem is quite subtle. In
particular, the experiment [1] found that the third current
cumulant was not described by the simple theoretical
prediction [2], but was masked by the influence of the
measurement circuit causing an additional ‘‘cascade’’ cor-
rection [3,4]. Recent experiments demonstrated a measure-
ment of the third current cumulant without cascade
corrections [5], and the detection of individual electron
counting statistics [6]. Stringent bandwidth requirements
in measuring the third cumulant suggested that further
experimental advances would require a new approach.

A conceptually different way to measure rare current
fluctuations is with a threshold detector [7,8], the basic idea
of which is analogous to a pole vault: A detection event
occurs when the measured system variable exceeds a given
value. A natural candidate for such a detector is a meta-
stable system operating on an activation principle [9]. By
measuring the rate of switching out of the metastable state,
information about the statistical properties of the noise
driving the system may be extracted. A threshold detector
using an on-chip conductor which contains a region of
negative differential resistance [8,10] was proposed by
the authors and shown to be capable of measuring large
deviations of current. Tobiska and Nazarov proposed a
Josephson junction (JJ) threshold detector [7], the simplest
variant of which (see Fig. 1) operates essentially in a
Gaussian regime [11]. The third cumulant contribution is
small [12] and may be extracted using the asymmetry of
the switching rate with respect to bias current, as has been
demonstrated in recent experiments [13,14].

In this Letter we solve Kramers’ problem [9] of noise-
activated escape from a metastable state beyond the
Gaussian noise approximation and investigate how the
measurement circuit affects threshold detection. Starting
with general Hamiltonian-Langevin equations which in-
clude deterministic dynamics, dissipation, and fluctua-
tions, we represent the solution as a stochastic path

integral of Hamiltonian form [15,16] by doubling the
number of degrees of freedom. In the weak damping
case, the dynamics is dominated by energy diffusion,
which we account for by a change of variables, enabling
an effectively two-dimensional representation. We find the
escape rate via an instanton calculation, and obtain a
formal solution of Kramers’ problem [9]. Applying these
general results to a JJ threshold detector, we account for the
influence of the measurement circuit and find that the
cascade corrections are a consequence of the nonequilib-
rium character of the noise [17].

Hamiltonian-Langevin equations.—To reformulate and
solve Kramers’ problem beyond Gaussian noise, we intro-
duce a theoretical framework that relies on a separation of
time scales: Slow motion of a deterministic system on a
time scale T0 is affected by quickly fluctuating noise
sources with correlation time �0 � T0. Quite generally,
this situation can be described by Hamiltonian-Langevin
(HL) equations. For instance, in a two-dimensional phase
space (p, q) the equations of motion are

 

_q � @H�p; q�=@p� Iq; _p � �@H�p; q�=@q� Ip;

(1)

where H�p; q� is the Hamiltonian that generates determi-

 

FIG. 1. Josephson junction (JJ) threshold detector: Simplified
electrical circuit with the JJ (marked with an X) and mesoscopic
system inserted. The driving noise of the system creates fluctua-
tions of the center node voltage V, that can activate the JJ out of
its supercurrent state, into its running dissipative state until it is
recaptured.
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nistic motion, and Iq and Ip are white noise sources. On the
intermediate time scale t, such that T0 � t� �0, the
sources are Markovian and fully characterized by the gen-
erating function H ��p; �q� of their cumulants (irreducible
moments): hhInpImq ii � @n�p@

m
�q
H �0; 0�.

While Langevin equations may be solved by standard
methods in stochastic physics [18], the methods fail to
account for cascade corrections [3,16] to higher-order
cumulants, which originate from the effect of slow varia-
tions of p and q on the noise sources. Therefore, we follow
the steps of Refs. [15,16] and represent the slow evolution
of the system, governed by Eqs. (1), with the stochastic
path integral (SPI) P �

R
D�

R
DR exp�S�, where the

action S is given in the explicitly canonically invariant
form as

 S �
Z
dt0��� 	 _R�� 	 fR; Hg �H ��;R�
: (2)

Here R � �p; q� and � � ��p; �q� are the sets of physical
and canonically conjugated ‘‘counting’’ variables, respec-
tively, and f. . .g denotes the Poisson bracket with respect to
p and q. By fixing R in the final state of (2) we obtain the
probability distribution P�R�, while fixing the final �
variables turns the SPI into the moment generating func-
tion P���.

The large parameter T0=�0 � 1 allows the saddle-point
evaluation of the SPI and thus requires solving Hamilton’s
equations of motion in the extended space [16]. There
always exists a trivial solution � � 0 and _R � fR; Hg �
hIi, where I � �Ip; Iq�, that describes the ‘‘average’’ dy-
namics in physical space with a null action S � 0, giving
the proper normalization of the distribution P. In the con-
text of the generalized Kramers’ problem, one has to find a
nontrivial instanton solution �in�R� of Eq. (2), for which
the SPI gives a rate of the noise-activated escape from a
localized state, � / exp�Sin� [19].

Energy diffusion and escape rate.—As an important
case, let us consider quasiperiodic motion with the period
T0 � �0. We change variables to energy E � H�p; q� and
‘‘time’’ s � s�p; q� [20], accompanied by a new set of
counting variables (�E, �s), which are defined via �p �
�E@pH � �s@ps and �q � �E@qH � �s@qs. Using
fE;Hg � 0 and fs;Hg � 1, we obtain � 	 fR; Hg � �s.
Fluctuations of the s variable increase the action without
leading to escape; therefore, they can be neglected by
choosing �s � 0. In the weak damping regime, one can
set s � t, so that �p � _q�E and �q � � _p�E. The action
for the energy diffusion then reads [21]

 S �
Z
dt0���E _E�H ��E _q;��E _p�
: (3)

To leading order in weak damping we can replace the
generator H in Eq. (3) with its average over the oscillation
period hH iE � �1=T0�

H
dtH , evaluated for fixed �E and

E. Corrections in damping may be found by taking into
account slow energy dissipation _E � @�EH and _�E �

�@EH , while averaging over the period T0. We are inter-
ested in the instanton solution �E � �in�E� with hH iE �
0 in the initial and final state [10]. Since the
‘‘Hamiltonian’’ hH iE is an integral of motion, we obtain
an important result for the escape rate,

 log� � �
Z
�indE; hH ��in _q;��in _p�iE � 0; (4)

which formally solves Kramers’ problem for arbitrary
Markovian noise in the weak damping limit. Below we
apply the theory outlined here to the stochastic dynamics of
a Josephson threshold detector.

Josephson threshold detector.—The circuit in Fig. 1
shows the essential part of the detector comprised of the
JJ with Josephson energy EJ, and the capacitor, C. The
circuit is current biased with IB through the macroscopic
conductor and by the system current IS, which is to be
measured. According to Kirchhoff’s law, the total bias
current IS � IB is equal to the sum of the Josephson current
I� � �EJ=�0� sin� where �0 � @=2e, and the displace-
ment current IC � C _V. This leads to the equation of mo-
tion for the superconducting phase �,

 C�2
0

��� EJ sin� � �0�IS � IB�; (5)

where we used the relation V � �0
_�.

To simplify the following analysis and concentrate on
our main message, we make a number of assumptions,
most of which will be relaxed later. First, we consider an
Ohmic system and bias resistor, so that hISi � JS �GSV
and hIBi � JB �GBV, where GS, GB are the system and
bias conductances, and the constant currents JS � GSVS,
JB � GBVB are just tunable parameters. The bias resistor,
being a macroscopic system, creates Gaussian Nyquist
noise hhI2

Bii � 2TGB. We further assume a high-impedance
circuit, so that the back flow part of the bias current GBV
and the Nyquist noise may be neglected, IB � JB, which
we refer to as the ideal detection scheme. Then Eq. (5) can
be rewritten as a set of HL equations (1) for the phase
variable � and canonically conjugated momentum p �
�0CV,

 

_� � p=m; _p � �@U=@���0�IS � JS�; (6)

with ‘‘mass’’ m � �2
0C.

Equations (6) describe the motion of a ‘‘particle’’ in the
tilted periodic potential

 U��� � �EJ cos���0�JS � JB��; (7)

stimulated by the dissipative part IS � JS of the system’s
current. For later convenience, we define the normalized
total bias current as J � �0�JS � JB�=EJ. In what fol-
lows, we investigate noise-activated escape from the meta-
stable supercurrent state, where hVi � 0.

Weak damping regime.—Here the system conductance is
small, GS � !plC, so the phase oscillates with the plasma
frequency !pl��J�1�J �1=4, where �J��EJ=�2

0C�
1=2.

The energy relaxes slowly with the rate GS=C to the local
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potential minimum. We further assume the separation of
time scales, 1=�0 �maxfeVS; Tg � @!pl, so that the noise
source IS is Markovian. Comparing (6) and (1), we identify
q � �, Ip � �0�IS � JS� and Iq � 0, so the equations for
the escape rate and ‘‘instanton line’’ read

 log� � ���1
0

Z
�indE; hH ��in

_��iE � 0; (8)

where H is the generator of the cumulants of the dissipa-
tive part of the system current, IS � JS, and �0 plays the
role of an effective charge.

We first consider the system in thermal equilibrium as a
checkpoint of the theory. The cumulant generator acquires
the simple form H � ��0GS

_���in
_�� � TGS��in

_��2,
where the first term comes from the linear response of
the system current IS � JS � �GSV to the potential V �
�0

_�, while the second term is the Gaussian Nyquist noise
contribution, hhI2

Sii � 2TGS. Averaging H over the period
of oscillations, we observe that the term h _�2iE cancels, so
that �in � �0=T. Using Eq. (8) we obtain Kramers’ well-
known formula for the rate of thermally activated escape

 log� � ��U=T; (9)

where the potential threshold �U is a function of normal-
ized bias J . For the potential (7) one obtains �U=EJ �
2�1� J 2�1=2 � 2J arccosJ , see Fig. 2. Limiting values
are �U=EJ � 2 for J � 0, while as J ! 1, �U=EJ 
�4

���
2
p
=3��1� J �3=2.

The above example shows that the argument of H is
small. Indeed, we estimate _��!pl, so e _��in �

@!pl=T � 1 due to the separation of time scales.
Therefore, away from equilibrium we can expand hH iE

in Eq. (8), average the result over the period of oscillations,
and invert the series for �in. To second order in �in we
again obtain Kramers’ formula [9] with the temperature T
replaced with the effective temperature

 Teff � hhI
2
Sii=2GS (10)

of the nonequilibrium noise.
To find the third cumulant correction to the Kramers’

formula, we expand hH � _��in�iE in �in and the voltage V,
and collect all terms to next order in small parameter
@!pl=Teff . Two terms which contain hhI3

Sii and @VShhI
2
Sii

come with the factor h _�3iE [22]. This factor vanishes to
leading order in damping, because for fixed energy _� is an
odd function of time over the oscillation period. Therefore,
we evaluate the average h _�3iE by taking into account slow
variation of the energy. This is accomplished by taking
functional variations of the action to find �in � �0=Teff

and _E � �2
0GS

_�2. We skip a number of straightforward
steps and present the result for the nonequilibrium escape
rate
 

log� � �
�U
Teff
�
D1�0EJhhI

3
Siitot

CT3
eff

; (11a)

D1 �
Z dE
EJ

h��0 ��� _�2iE

3h _�2iE
; (11b)

where the dimensionless factorD1�J � is a characteristic of
the detector. Appearing in the integral (11b) is one of the
turning points of the oscillating phase, �0, defined by the
solution of U��0� � E that is nearest the top of the poten-
tial. For the potential (7) D1�0� � �=3 and for strong bias
J ! 1 we obtain D1�J �  0:8�1� J �2. The parameter
D1, evaluated numerically, is shown in Fig. 2.

The total third current cumulant

 hhI3
Siitot � hhI

3
Sii � 3Teff@VShhI

2
Sii (12)

is taken at V � 0 and contains a correction originating
from the slowly varying second current cumulant. This
contribution is analogous to the cascade correction [3,4]
directly observed in third cumulant [1]. The correction is
generally not small and may even change the sign of the
total cumulant. For instance, for systems far from equilib-
rium hhInSii � FnhISi, where Fn are the dimensionless Fano
factors, we obtain hhI3

Siitot � �F3 � 3F2
2=2�hISi.

Overdamped regime.—In this regime the conductance
is large, GS � !plC, and the dynamics is entirely due
to slow phase relaxation with the rate !2

plC=GS. There-

fore, we can set p � m _� and �q � 0, and neglect the
first term in the action (2), so that the action reads S �R
dt�H ��0�p; _�� � �p@�U
, where again H is the gen-

erator of the cumulants of the dissipative part of the system
current, IS � JS.

The following analysis is analogous to that of the weak
damping regime. We first expand H to second order in �p
and find from the equations of motion that _� � Teff�p and

 

φ

p

FIG. 2 (color online). The normalized potential threshold
�U=EJ and dimensionless factors D1 and D2, are plotted versus
the normalized current bias J � �0�JS � JB�=EJ. The inset
shows the phase space plot of a trajectory for weak damping
(thick line) which leads to the escape, and the separatrix (dashed
line). The turning points �0 are shown by the dots.
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�p � @�U=��
2
0TeffGS�. Substituting these results back to

the action we immediately obtain Kramers’ formula [9]
with T replaced with Teff . Next we observe that the argu-
ment of H is small, namely e�0�p � @!2

plC=GSTeff � 1

due to the separation of time scales requirement. We
collect all the terms to third order in this parameter and
evaluate them perturbatively using the above results for �p
and _�. We finally obtain
 

log� � �
�U
Teff
�
D2E

2
JhhI

3
Siitot

�0T
3
effG

2
S

; (13a)

D2 � �1=6�
Z
d��@�U=EJ�2; (13b)

where the total cumulant hhI3
Siitot is given by Eq. (12),

and D2�J � is a dimensionless detector property. For the
potential (7) it is given by D2 � �1=6��1� 2J 2��

arccosJ � �1=2�J �1� J 2�1=2, see Fig. 2. Limits are
D2�0� � �=12, and as J ! 1, D2�J �  0:25�1� J �5=2.

Discussion.—We now remark on the application of our
results to the detection of non-Gaussian fluctuations. It is
evident from Fig. 2 that D1;2 � �U=EJ as J ! 1.
Therefore, in the strong bias regime the third cumulant
contribution in (11) and (13) is suppressed compared to the
Kramers’ term S0 � �U=Teff . But even for a relatively
weak bias, when D1;2 � 1, non-Gaussian effects are small.
Indeed, we estimate the correction as �Rwd=Q�S0, where
the JJ quality factor Q � C!pl=GS > 1 in the weak damp-
ing regime (wd), and the ratio Rwd � @!pl=Teff < 1 due to
the separation of time scales. Similarly, in the strong damp-
ing regime (sd), Q< 1, the correction is of order RsdS0,
where Rsd � @!2

plC=GSTeff < 1 due to the separation of
time scales. Since S0 itself cannot be too large for the
escape to be detected, in experiments one should try to
saturate the above inequalities and use the asymmetry of
the third cumulant (12) as a function of the current bias JB.

Next, we briefly discuss nonideal detection and non-
linear effects. The finite conductance of the bias resistor
GB contributes to the total conductance of the circuit
Gtot � GS �GB and the Nyquist noise hhI2

Bii � 2TGB
adds to the total noise power. Therefore, in Eqs. (11)–
(13) one has to replace GS with Gtot and the effective
temperature with ~T � �GSTeff �GBT�=Gtot. The nonline-
arity of the system current leads to the correction ��p=2��

��0
_��2@2

VS
hISi to H , and thereby to an additional contri-

bution to the total third cumulant, hhI3
Siitot � hhI3

Sii �

3 ~T@VShhI
2
Sii � 3 ~T2@2

VS
hISi, in both transport regimes con-

sidered above. Quite remarkably, this total third cumulant
is related via hhI3

Siitot � 3C2GtothhV
3ii to the instantaneous

fluctuations of the voltage V [23].
We finally note that in the experiment of Ref. [13] the

circuit corrections have not been observed, which we ex-
plain by a very low impedance of the circuit, GS=Gtot � 1,
operating in the weak damping regime with Q �
C!pl=Gtot � 2:5. Indeed, in this case ~T � �GS=2Gtot�eVS

(assuming T � 0); therefore, the circuit corrections are
suppressed by a small factor GS=Gtot. On the other hand,
the first term in Eq. (11a) is S0 � �U= ~T and the second
term can be estimated as �Gtot=GS��Rwd=Q�S0, where
Rwd � @!pl=eVS in this case. Therefore the relative con-
tribution of the third cumulant to the total action increases
by the factor Gtot=GS, which makes it favorable to use a
low-impedance circuit.

This work has been supported by the Swiss National
Science Foundation.

[1] B. Reulet, J. Senzier, and D. E. Prober, Phys. Rev. Lett. 91,
196601 (2003).

[2] L. S. Levitov and M. Reznikov, Phys. Rev. B 70, 115305
(2004).

[3] K. E. Nagaev, Phys. Rev. B 66, 075334 (2002).
[4] C. W. J. Beenakker, M. Kindermann, and Yu. V. Nazarov,

Phys. Rev. Lett. 90, 176802 (2003).
[5] Yu. Bomze et al., Phys. Rev. Lett. 95, 176601 (2005).
[6] S. Gustavsson et al., Phys. Rev. Lett. 96, 076605 (2006).
[7] J. Tobiska and Yu. V. Nazarov, Phys. Rev. Lett. 93, 106801

(2004).
[8] A. N. Jordan and E. V. Sukhorukov, Phys. Rev. B 72,

035335 (2005).
[9] H. A. Kramers, Physica (Utrecht) 7, 284 (1940).

[10] A. N. Jordan and E. V. Sukhorukov, Phys. Rev. Lett. 93,
260604 (2004).

[11] J. P. Pekola et al., Phys. Rev. Lett. 95, 197004 (2005).
[12] J. Ankerhold, Phys. Rev. Lett. 98, 036601 (2007).
[13] A. V. Timofeev et al., cond-mat/0612087.
[14] H. Pothier, B. Huard, N. Birge, and D. Esteve (unpub-

lished).
[15] S. Pilgram, A. N. Jordan, E. V. Sukhorukov, and
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