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A local growth algorithm for a decagonal quasicrystal is presented. We show that a perfect Penrose
tiling (PPT) layer can be grown on a decapod tiling layer by a three dimensional (3D) local rule growth.
Once a PPT layer begins to form on the upper layer, successive 2D PPT layers can be added on top
resulting in a perfect decagonal quasicrystalline structure in bulk with a point defect only on the bottom
surface layer. Our growth rule shows that an ideal quasicrystal structure can be constructed by a local
growth algorithm in 3D, contrary to the necessity of nonlocal information for a 2D PPT growth.
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The announcement of the icosahedral phase of alloys in
1984 [1] posed many puzzles. The first question was what
kind of arrangement of atoms could produce Bragg peaks
with a rotational symmetry forbidden to crystals. The
quasiperiodic translational order was proposed immedi-
ately as a candidate, and such materials began to be called
quasiperiodic crystals or quasicrystals for short [2].
However, the appearance of quasicrystals brings new puz-
zles: why and how the atoms can arrange themselves to
have such order, and especially, how quasicrystals can
grow with perfect quasiperiodic order has been a dilemma
since it seemingly requires nonlocal information while
atomic interactions in metallic alloys are generally consid-
ered to be short ranged.

There are currently two alternative pictures to describe
quasicrystals: energy-driven perfect quasiperiodic quasi-
crystals and entropy-driven random-tiling quasicrystals.
Accordingly, two alternative scenarios for the growth [3]
of quasicrystals exist: matching-rule based, energy-driven
growth, and finite-temperature entropy-driven growth [4].
A major criticism for the former approach has been that no
local growth rules can produce a perfect quasicrystalline
structure in 2D [5,6]. Here, we show how to overcome this
obstacle in a 3D quasicrystals.

Penrose tiling [7] has been a basic template for describ-
ing formation and structure of ideal quasicrystals. It can be
constructed from fat and thin rhombi with arrowed edges
shown in Fig. 1(a). The infinite tiling consistent with
arrow-matching rules is the Penrose tiling but they do not
guarantee the growth of a perfect Penrose tiling (PPT) from
a finite seed. Successive ‘‘legal’’ (obeying the arrow-
matching rules) additions of tiles to the surface of the
already existing legal patch of tiles can produce defects.
They usually occur after only a handful of tiles are added,
and hence the arrow-matching rules cannot explain the
long-range quasicrystalline order engendered by growth
kinetics.

There has been a great amount of discussion and a
number of debates on the possibility of a local growth

algorithm for a PPT [3–6,8–10]. The debates partially
emerge from a different assumption on the growth pro-
cesses at the surface, uniform growth and preferential
growth. In the former, growth occurs at any surface site
with the same attaching probability, while it occurs with
different attaching probabilities in the latter. In 1988,
Penrose proved that a PPT cannot be grown by local rules
with uniform growth by showing that ‘‘deceptions’’ are
unavoidable [5] where a deception is a legal patch which
cannot be found in a PPT [5,6]. In the same year, Onoda
et al. introduced a preferential growth algorithm which can
avoid deception by local rules called ‘‘vertex rules’’ [3].
However, vertex rule growth stops at a ‘‘dead surface’’ and
nonlocal information or arbitrarily small growth rates are
required to be an infinite PPT. Yet, their growth algorithm
is believed to provide methods to grow the most ideal
quasicrystalline structures with local information. If an
initial seed contains a special kind of defect, called ‘‘de-
capod’’ [11], Onoda et al. showed that the seed can be
grown to an almost PPT (whose only defect is the initial
decapod defect) [3]. A point defect in a 2D tiling growth
usually implies a line defect in a 3D decagonal tiling
growth. If we apply a solid-on-solid type growth [12] so
that a layer copies configuration of the one below, we get
decagonal tiling consisting of identical layers with a de-
capod defect at the center of each layer. This line defect has
been considered to be a minimum imperfection for the 3D
decagonal quasicrystal structure from the local growth
algorithm.

In this Letter, we consider the growth of decagonal
quasicrystals and present a local growth algorithm for 3D
decagonal tiling which consists of PPT layers except the
bottom layer. We use the two well known results of the
Onoda et al. study on planar decagonal quasicrystal growth
[3]. (i) A local growth method around a ‘‘cartwheel de-
capod’’ leads to dead surfaces, from which further growth
of a PPT requires nonlocal information. (ii) Infinite local
growth is possible if it starts from an ‘‘active decapod
defect’’ but the resultant tiling contains the defect and is
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not a PPT. By combining an active decapod defect in the
bottom layer with a cartwheel decapod in the second layer
and using the information of the underneath configuration,
we make the growth continue beyond dead surfaces in the
second, and subsequent layers. The bottom surface layer
has a point defect, but we can consider the overall structure
as that of a perfect decagonal quasicrystal since deviations
from the bulk layer structure are natural for the surface
layer even for ideal crystal materials.

Let us first discuss the growth rule in a 2D Penrose tiling.
For the arrow-matching-rule growth, a deception can be
made as few as three tiles [5]. Since the growth process
does not allow tiles to be removed, a deception (which is
not a part of a PPT) cannot grow to a PPT, and we need a
growth rule which allows no deceptions of any size for a
PPT growth. We can avoid three tile deceptions by intro-
ducing a more restricted growth rule which allows only
correct (subset of a PPT) three tile patches. However, the
new growth rule can make a deception in a larger scale, for
example, a three tile deception of inflated [11] tiles. Since a
deception can be made in all scales of multiply inflated tile
sizes [11], it is unavoidable for a local growth rule. The
absence of local rules for perfect tiling growth seems to be
the case for general aperiodic tilings in 2D [6]. Based on
this observation, Penrose even speculates that there may be
a nonlocal quantum-mechanical ingredient to quasicrystal
growth [5,13].

Onoda et al. proposed ‘‘vertex rules’’ which avoid an
encounter of deceptions [3]. Here, a tile can be added only
to a ‘‘forced edge’’ which admits only one way of adding a
tile for its end vertices to be consistent with any of the eight

PPT vertex configurations shown in Fig. 1(b). In this
Letter, their vertex rules will be called ‘‘rule L’’ and used
for the ‘‘lateral’’-direction growth (for 3D decagonal ti-
lings). The problem of rule L is that the growth stops at a
finite size patch called a ‘‘dead surface’’ which consists of
unforced edges.

There are special kinds of pointlike defects, called de-
capod defects [11], which can be an ideal seed to grow an
almost PPT without encountering a dead surface [3]. A
decapod is a decagon with single arrowed edges. Since
there are 10 arrows, each of which can take two indepen-
dent orientations, there are 210 combinations of states.
After eliminating rotations and reflections, we get 62 dis-
tinct decapods. We can tile inside the decagon legally for
only one decapod, the cartwheel case and the rest of the 61
decapods are called decapod defects. One notable property
of the decapods is that the outside of the decagon region
can be legally tiled for all 62 cases. This can be easily
understood from the fact that six semi-infinite worms and
two infinite worms meet at the center cartwheel decagon
[shown by green tiles in Fig. 1(c)] in a cartwheel tiling. If
we remove the tiles in the center cartwheel decagon, two
infinite worms become four semi-infinite worms, and we
have ten semi-infinite worms which start at the perimeter
of the center decagon. A decapod defect tiling is formed by
flipping one or more of these ten semi-infinite worms. The
arrows on the worm perimeter will still fit except a mis-
match at the decapod decagon perimeter. Figure 1(d)
shows an example obtained by flipping the worm denoted
by red hatched tiles. Among 61 decapod defects, there are
51 ‘‘active’’ decapod defects which have at least three
consecutive arrows of the same orientation on their deca-
gon perimeter [14]. One can show that a patch containing
an active decapod defect is never enclosed by a dead
surface [15].

Our 3D growth rules are constructed by observing that a
cartwheel PPT and a decapod tiling can be different only in
ten semi-infinite worms. Consider two layer growth from a
(two layer) seed that contains a cartwheel decagon [yellow
tiles in Fig. 1(c)] and a decapod defect [yellow tiles in
Fig. 1(d)] at the upper and the lower layers, respectively. If
each layer grows with rule L independently, the growth of
the upper layer would stop at the red-purple-blue dead
surface while the lower layers grow indefinitely. Now, we
introduce a vertical growth rule so that a tile can be added
at the dead surface of the upper layer properly. Note that
the basic tiles for 3D decagonal tiling are rhombus prisms
which have top and bottom faces as well as side faces. By
vertical growth, we mean attaching tiles on the surface
layer such that the bottom faces of the attached tiles contact
with the top faces of the surface layer tiles, while lateral
growth means attaching tiles to side faces at the perimeters.
We propose a vertical growth rule, ‘‘rule V,’’ with which
the lateral growth rule, rule L produces a PPT on a decapod
tiling. If a tile in a flipped worm of the decapod tiling (the
lower layer) is copied by a vertical growth, a defect on the
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FIG. 1 (color online). (a) Fat and skinny Penrose tiles with
arrows. (b) The eight ways of surrounding a vertex in a PPT.
(c) Dead surfaces encountered when a tiling is grown by rule L
from a cartwheel decagon. See text for details. (d) A decapod
tiling. Ten semi-infinite worms meet at the decapod decagon at
the center. From the yellow seed tiles, an infinite tiling (decapod
tiling) can be grown by rule L.
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upper layer is inevitable. Our rule V is designed to avoid
such a case and allow tiles to attach vertically only on the
‘‘sticky’’ top faces, blue-circled fat tiles in S3 and S4

configurations shown in Fig. 2(a) [16]. They always form
D hexagons indicated by dotted lines. Such D hexagons
can lie only at the end of worms since the other (uncircled)
tiles in S3 or S4 configurations prevent formation of hex-
agons next to the circled tiles. Therefore, the sticky sites
can be located only outside or at the ends of the semi-
infinite worms as illustrated in Figs. 2(b)–2(e). One can
further show that sticky sites are strictly outside of the
semi-infinite worm if it is flipped since the flipping makes
the vertices at the end be illegal (and therefore they cannot
be S3 or S4). Therefore, no sticky sites are in the flipped
worm, and hence rule V does not introduce a defect or
deception for the layer that grows on a decapod tiling.

Now we show that rule V is enough for the upper layer to
grow beyond the dead surfaces when the growth starts from
a proper seed. Our seed consists of two layer finite patches
which include a cartwheel decagon and an active decapod
decagon at the upper and the lower layers, respectively.
Figures 2(b) and 2(c) show an example. The upper layer
seed [Fig. 2(b)] consists of a cartwheel decagon and 10 D
hexagons. It covers all ends of the semi-infinite worms in
the lower decapod seed [Fig. 2(c)] which consists of a
decapod decagon and 10 D hexagons [17]. Let us first
consider the properties of dead surfaces which contain
the upper layer seed. By applying inflations to a cartwheel

tiling, one can show that the dead surfaces, which contain
the center cartwheel decagon, have two 72� corners and
each corner is passed by an infinite worm [green worms in
Fig. 2(e)] of the cartwheel tiling [10,11]. TheD hexagon at
the 72� corner forces the next two hexagons just outside of
the dead surface (in the infinite worm direction) to be D
and Q. These two hexagons force a cartwheel decagon to
form just outside of the corner as illustrated by (red and
purple) dashed lines in Fig. 2(e). AQ decagon (denoted by
yellow tiles) in the dashed cartwheel decagon forces a tile
just outside of the 72� corner [denoted by the solid green
circles in Fig. 2(e)] to be sticky. We call these sticky sites as
‘‘launching’’ sites. The exact position of a launching site
depends on the orientation of the corner [10] but the patch
can grow by rule L for both cases. The position of the
launching site determines the orientation of the worm
along the side lines of the dead surface making the edges
at the dead surface become forced. Hence, the upper layer
would grow to infinite by rule L if rule V guarantees tiles at
the launching sites. This is the case when it grows on an
active decapod tiling obtained by flipping a semi-infinite
worm [18] of a cartwheel tiling as shown in Fig. 2(d). Since
neither crossing infinite-worms are flipped [compare
Figs. 2(d) and 2(e)], the underneath tiles of the launching
sites will be always the sticky sites of the decapod tiling
and tiles at the launching sites are guaranteed by rule V on
the decapod tiling.

For the completeness of the 3D decagonal quasicrystal
growth, we need to provide the rule for the nucleation of an
island (seed) from the third layer. The physical process of
the nucleation of an island on a PPT would be similar to
that of a perfect crystal surface. High quality quasicrystals
are grown when they grow slowly, or in other words, when
the chemical potential of bulk quasicrystal is slightly less
than that of the fluid phase. Therefore, adatoms or ‘‘ad-
tiles’’ on a terrace would be unstable and probably diffuse
on the terrace until they evaporate (i.e., go back to the fluid
phase) or attach to preferential sites (forced or sticky sites)
[12]. We believe that the chemical potentials of the forced
sites are less than those of sticky sites and adtiles attach to
forced sites for most cases. However, when the terrace
forms a dead surface (or part of a dead surface), it is not
easy for an adatom to find a forced site and it would attach
on a sticky site, especially to a launching site whose
chemical potential is expected to be lower than that of an
isolated sticky site. Note that both forced and launching
sites are at the perimeters of terraces and become irrelevant
to adtiles on the middle of the terraces as they grow
sufficiently large. It is then conceivable that two or more
adtiles meet on a terrace and begin to form a new patch of
the next layer before they arrive at the perimeter. With this
physical process in mind, we allow a nucleation process in
our growth algorithm. The nucleation of an island can
happen in cooperation of a quite large cluster of tiles. We
choose the ‘‘cartwheel seed,’’ a cartwheel decagon and the
10 D hexagons arranged as Fig. 2(b), as such a cluster and
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FIG. 2 (color online). (a) Sticky sites, on which a tile can be
attached vertically, are indicated with blue circles. (b) Upper
layer configuration of a (two layer) seed. It contains a cartwheel
decagon and ten hexagons attached to the decagon. The tiles
denoted by blue circles are sticky site and the tile denoted by X is
the nucleate site. (c) Lower layer configuration of the (two layer)
seed. It contains an active decapod decagon with five consecu-
tive arrows of the same orientation. (d) Sticky sites on a decapod
tiling. All sticky sites are outside of the ten semi-infinite worms.
(e) Dead surfaces which contain the center cartwheel decagon in
a cartwheel tiling. The two crossing infinite worms of the
cartwheel tiling always pass the two 72� corners of dead
surfaces.
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introduce a nucleation site on it. The site X in the figure is
called a ‘‘nucleate site’’ if its lateral neighboring tiles form
a cartwheel seed and if it has a underneath tile [19]. When a
nucleate site is selected, we create a cartwheel seed on it.

Let us summarize our growth mechanism for decagonal
quasicrystals. It consists of the following three processes:
lateral growth by rule L, vertical growth by rule V, and the
island nucleation (seed formation) for the new layer.
Algorithmically, it is realized by the following steps:
(i) Start with a two layer seed whose upper and lower
layers contain a cartwheel decagon and an active decapod
decagon, respectively. (ii) Randomly choose a surface site.
Check if it is a sticky, nucleate, or unsticky site when it is a
top face. For a side face, check if it is a forced or unforced
site. (iii) Perform the vertical growth, nucleation, or lateral
growth if the chosen site is a sticky, nucleate, or forced site,
respectively. Do nothing for an unsticky (top face) or
unforced (side face) site.

For simplicity, we have chosen the unit attaching proba-
bility for all sticky, forced, and nucleate sites. In real
material, they probably have different attaching probabil-
ities due to differences in their chemical potentials and
attaching kinetics. We think that the attaching probabilities
are different even among the forced sites (and among the
sticky sites) since they depend on local configurations.
However, the nucleation probability would be much
smaller than that of the attaching probability of a tile in
any case since the former demands a cooperation of many
tiles. The slow process of nucleation implies a layer by
layer growth for a perfect decagonal quasicrystal [20]. It is
beyond the scope of this Letter to predict the growth
kinetics of real quasicrystals since it requires knowing
atomic cluster structures corresponding to each type of
tiles as well as the kinetic parameters of atomic attachment
of real materials.

Our growth algorithm has a couple of limitations. First,
it can produce only one kind of PPT, a cartwheel tiling.
Second, the seed must include a decapod defect. However,
a decapod defect may form under quite general conditions.
It is believed that every possible hole surrounded by an
arrow-matched Penrose tiling is equivalent to a decapod
hole [11]. The bottom layer, which may grow under struc-
turally different environment, is a natural place to have
such defect. Our algorithm shows that PPT is possible from
the second layer if the defect can be surrounded by legal
tiles. Once a PPT layer begins to form on the second layer,
our growth algorithm produces PPT layers easily from the
third layer. We hope that the present work stimulates
studies on 3D growth rules for real quasicrystals.
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