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Large-Scale Circulation Model for Turbulent Rayleigh-Bénard Convection
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A model for the large-scale-circulation (LSC) of turbulent Rayleigh-Bénard convection in cylindrical
samples is presented. It consists of two physically motivated stochastic ordinary differential equations,
one each for the strength and the azimuthal orientation of the LSC. Stochastic forces represent
phenomenologically the influence of turbulent fluctuations. Consistent with measurements, the model
yields an azimuthally meandering LSC with occasional rotations, and with more rare cessations. As in
experiment, cessations have a uniform distribution of LSC orientation changes.
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Rayleigh-Bénard convection (RBC) consists of a fluid-
filled container heated from below [1]. Cylindrical contain-
ers with aspect ratio I' = D/L (D is the sample diameter
and L the height) and 0.5 =T =< 3 have a large-scale
circulation (LSC) [2-9] that consists of warm up-flowing
and cool down-flowing fluid on opposite sides of the
sample. Its near-vertical circulation plane has an orienta-
tion 6, that undergoes azimuthal diffusion [10-12]. An
interesting aspect is that 6, in addition to its diffusive
meandering, undergoes relatively rapid oscillations that
are phase shifted by 7r at the top relative to the bottom of
the sample [8]. In addition, on somewhat longer time
scales, the LSC experiences spontaneous and erratic reor-
ientations through an azimuthal displacement A6 [11-16].
One mechanism for reorientation is a rotation of the entire
structure without much change of the flow speed [13].
Rotations lead to a power-law distribution of Af, with
small rotations more likely than large ones [11,15]. The
other mechanism is a cessation of the flow in which it stops
briefly and then starts up again in a random new orienta-
tion, resulting in a uniform distribution of A@ [11,15].
Aside from its fundamental interest, the phenomenon of
reorientation is important, for instance because it occurs in
natural convection of the atmosphere [17], and because
cessations of the flow in Earth’s outer core are likely to be
involved in reversals of Earth’s magnetic field [18].

Several models were proposed to reproduce the LSC
dynamics. Those of Sreenivasan et al. [7] and Benzi [19]
were based on similar stochastic equations that were
chosen in an attempt to produce the desired reversal events,
but they had no way of estimating the parameters and so
could not make independent quantitative predictions. The
equations yielded two opposite stable flow directions with
transitions between them, in qualitative agreement with
experiments by Sreenivasan et al. [7]. However, such local
flow reversals usually are not cessations or rotations; they
are equivalent to crossings of the LSC orientation past a
fixed angle and correspond mostly to small orientation
changes, or “jitter”” [11]. Another model, by Fontenele
Araujo et al. [20], was based on a deterministic force
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balance between buoyancy and drag. It produced LSC
reversals (Af = 7r), but was two dimensional (leaving
out the azimuthal coordinate) and so could not reproduce
the azimuthal dynamics seen in experiments. Finally, a
deterministic model based on the Boussinesq equations
with slip boundary conditions and for ellipsoidal sample
geometries was developed by Resagk er al. [21]. It ne-
glected dissipation and diffusion, but added these effects
phenomenologically after the model was derived. The
result was a set of ordinary differential equations (ODEs)
with several parameters that could be tuned to produce a
LSC with various dynamical states, including oscillations
(which, however, do not seem to exhibit the phase shift
between the top and bottom of the sample [8]) and chaotic
meandering; but the existence and statistics of rotations
and cessations were not explored.

We present a model consisting of two coupled stochastic
ODE:zs, one for the speed (or ““strength’”) of the LSC and the
other for the azimuthal LSC orientation. We retained the
physically important terms of the Navier-Stokes (NS)
equation and took volume averages. The resulting deter-
ministic ODE for the LSC strength represents the balance
between buoyancy and drag forces and has two fixed
points; one stable and the other, corresponding to cessa-
tions, unstable. The second ODE describes the azimuthal
motion of the LSC which is suppressed by its
angular momentum. The dynamics of the model arise
from the addition of stochastic forces that represent in a
phenomenological sense the action of the turbulent fluctu-
ations that exist throughout the system interior. We deter-
mined some parameters of the model from independent
measurements that did not involve reorientations per se,
determined others from theory, and did not adjust any of
them arbitrarily. In agreement with experiment [11,15], our
model yields a few cessations per day with a uniform
probability distribution p(A#), and more frequent rotations
with a power-law distribution.

For the LSC strength we consider the velocity compo-
nent uy4, where ¢ is an angle that sweeps the plane of the
LSC. One expects the acceleration to be due to a balance
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between buoyancy and drag forces. Thus we include in the
NS equation for uy only the acceleration, buoyancy, and
viscous drag terms, and neglect the nonlinear term [22]:

iy =ga(T —T,) + vViug. (1)

Here « is the isobaric thermal expansion coefficient, g the
acceleration of gravity, and v the kinematic viscosity.

To obtain an ODE that describes the flow, we take a
global average over the field variables that retains the
essential physics. For this we use the experimental result
[11,12,15,23] that the temperature of the LSC at the side
wall at midheight can be written as

T =T,+ &cos(f, — 0), 2)

where the temperature amplitude &(¢) represents the
strength of the LSC, and where 6,(z) is its azimuthal
orientation. The buoyancy acts on the entire LSC and is
proportional to 6. The profile is taken to be given by
Eq. (2), and proportional to the cylindrical radius r. The
velocity is assumed to be linear in r and a step function in
6. These assumptions about the flow geometry may affect
the coefficients in the equations, but not the functional
form. The drag is assumed to occur in the viscous boundary
layers of width A, so V2uy =~ U/A* [U(1) is the maximum
speed near the side wall], where A(r) = (L/ Z)R;l.l/ 2 24
(R,; = UL/v is the instantaneous Reynolds number). The
volume average requires another factor of 6A/L since the
drag is mainly in the boundary layers. These approxima-
tions result in the volume-averaged [12] equation

(2/3)U = (2/3m)gad — 1202032 /132 (3)
which has the steady-state solution
(2/3m)gad, = 120°R? /L3, )

Here R, is the steady-state Reynolds number and §, is the
steady-state amplitude. Next we make the assumption that
o is instantaneously proportional to the speed U, since both
variables are measures of the LSC strength. The propor-
tionality constant must satisfy Eq. (4). This fixes the pro-
portionality at (2/37)gad = 120URY?/L2. Equation (4)
forces the sum of the powers of U and R, to be 3/2. Thus
our assumption fixes the powers to be § x UR!?. We
substitute this into Eq. (3), combine all parameters into
two constants, and add a noise term that represents the
turbulent fluctuations of the flow to get the Langevin
equation
3/2
=2 _29

Ts 75y

+ f5(1) (&)

with

8o = 187AToRY?/R; 75 =L%/(18vRY?). (6)
Here the Rayleigh number is R = agATL3/kv with AT
the applied temperature difference and « the thermal dif-

fusivity, and the Prandtl number is o = v/k. In the ab-
sence of noise Eq. (5) has two fixed points, one unstable at

6 =0 and one stable when 6 = §;. In the stochastic
equation this feature reproduces some of the dominating
behavior of the LSC which spends most of its time mean-
dering near the stable fixed point at d,, but occasionally
ceases when fluctuations drive it close to 6 = 0.

As an example, we now consider R = 1.1 X 10!°, o =
44, and I' =1 for a sample with L =24.76 cm, v =
6.69 X 1073 cm?/s, and AT = 20 K [25]. Measurements
yielded 6, = 0.25 K and R, = 3700 [23]. From Eq. (6)
one has 754 = 85 s and 6, = 0.10 K. For §, theory and
experiment are in order-of-magnitude agreement, which is
acceptable given the approximations made in the model
(for numerical calculations we adopt the experimental
value). To learn about the noise intensity, we examined
the experimental mean-square amplitude-change ((d$)?)
({...) represents a time average) over a time period df as a
function of dt. For time scales that were not too large we
found ((d8)?) = Dgdt with Dg = 3.5 X 107> K?/s, sug-
gesting a diffusive process. This method was used before to
determine the diffusivity of 6, [11,12]; but in the present
case the diffusive scaling holds only over intermediate time
scales because 6 is bounded. With this input we made the
noise Brownian with diffusivity Dg, so fs(¢) is Gaussian
distributed with width \/Ds/h where h is the time step in
the simulation.

The second Langevin equation describes the azimuthal
motion. The driving force is the turbulent noise. The
angular-momentum of the LSC in the ¢ coordinate pro-
vides a damping force on the azimuthal motion. This
phenomenon is represented by the transport term in the
NS equation. We show below that the viscous drag across
the boundary layer near the side wall is small compared to
this transport term. Thus, for now neglecting the drag term
(and Earth’s Coriolis force; see [12]), we have

iy + (i - Vug = 0. 7

A volume average gives (1/3)L6, = —(2/3)U6,. The vis-
cous drag can be approximated by ity 4,4, = —61/Ri/ 2 6o/L
(Ref. [12], Eq. 10). Thus its ratio to that of the angular-

momentum damping is equal to 9R, 12 = 0.15 for R, =
3700, justifying its neglect. One sees that the angular-
momentum leads to a variable damping that is proportional
to the LSC strength U. Again we convert U to §, combine
the remaining parameters to get a new constant, and add a
noise term representing turbulent fluctuations to get

) N L?

by=— £4(0); )= 5o (8)

7400
For our example 75 =~ 13 s. The turbulent noise in this
coordinate is also found to be Brownian, with diffusivity
D, = 2.5 X 1077 rad?/s*. This diffusivity comes from a
fit of ((d6,)?) = D,dt to experimental data, where {(d6,)*)
is the mean-square change in rotation rate over the time
period dt. This scaling also only holds for short time
periods because 6, is bounded.
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FIG. 1. Time series of é and 6, from the simulation of Egs. (5)
and (8). & fluctuates around &, and occasionally those fluctua-
tions are large enough to cause a cessation where § = 0.

The two stochastic ODEs Egs. (5) and (8) are our model
for the LSC dynamics. Using the experimentally deter-
mined values of §,, Ds, and D,, and the predictions of
Eqgs. (6) and (8) for 75 and 7,4 with the measured value of
R,, they can be integrated numerically to get time series for
6 and 6, as shown in Fig. 1 over about 1 day. One can see,
as we expected, that the LSC amplitude 6 is stable with an
occasional cessation where the amplitude drops to zero.
From much longer simulations we found that cessations
occur about 3.8 times per day, which is about twice the
frequency measured experimentally [11], a good agree-
ment considering the approximations of the model.
Figure 1 shows that the orientation meanders as expected,
but one must look on a shorter time scale to see the details
of the dynamics. Thus, Fig. 2 shows a shorter section of the
same time series that contains a cessation. One sees how 0
gradually drops to zero, then grows back up again over a
few hundred seconds, just as observed experimentally [11].
The time series for 6, contains a large change in 6, during
the cessation, which is also seen in experiments [11].
Equation (8) for the azimuthal motion implies that, when
6 and thus the angular momentum are small during cessa-
tions, the damping term becomes small so the turbulent
fluctuations are free to accelerate the LSC to large azimu-
thal rotation rates. When the LSC is strong, i.e., 6 = d,
then the larger angular momentum of the LSC suppresses
the azimuthal rotation. This inverse relationship between &
and 90 was observed in experiments [11,15] but had not
been explained by any previous model.

To determine the statistics of cessations and rotations,
we analyzed the simulated time series using the same
algorithms as those applied before to experimental data
[11,15]. Figure 3(a) shows the probability distribution
p(Af) of the orientation change A@# during cessations.
The results from the simulations are consistent with a
uniform distribution p(Af) = 1/7, in agreement with
the experiments [11,15]. This is an important result that
no model had predicted before, either because the model
was attempting to describe a reversal of the flow direction,
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FIG. 2. Short section of the time series from Fig. 1 showing a
cessation. & drops to near zero; while 6 is small, the azimuthal
motion becomes fast because it is no longer suppressed by the
LSC angular momentum.

i.e., A@ = 7 and the # dependence was not contained in it
[7,19,20], or because the issue was not addressed [21]. The
angular momentum that usually suppresses the azimuthal
motion of the LSC is reduced during cessations, allowing
turbulent fluctuations to azimuthally rotate the LSC freely.
For large enough noise strengths, the azimuthal distance
traveled is large over the duration of the cessation, and this
results in a final orientation independent of the orientation
before the cessation, which explains the uniform p(A#).
We also find rotations in the model to result from a
similar mechanism. Rotations typically occur when the
angular momentum of the LSC is still large, so the azimu-
thal rotation is limited. This results in a monotonically
decreasing distribution of A@ for rotations. However, the
azimuthal rotation rate can become large even when ¢ is
somewhat lower than normal, resulting in more rotations,
and, in particular, more large rotations, than would be
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FIG. 3. (a) Probability distribution of the azimuthal change A6
during cessations. Solid line: the uniform distribution p(A6§) =
1/7r. (b) p(A#) for rotations. Solid line: a power-law fit.
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expected from purely Brownian noise with constant damp-
ing coefficient, a conclusion which was also implied by
experiments [11]. The simulation results can be repre-
sented reasonably well by a power law for p(A6) as shown
in Fig. 3(b), with an exponent of —2.5 in qualitative
agreement with the experiments [15], which gave a
power law with an exponent of —3.8. The significance of
this exponent is unknown to us. The rate of reorientations is
5 times larger in the simulation than in the experiment,
which is in order-of-magnitude agreement. In the simula-
tion, successive cessations and reorientations are found to
be independent of each other, i.e., the time intervals be-
tween events are Poisson distributed, in agreement with the
measurements [11,15].

We derived a dynamical model, motivated by the
Navier-Stokes equations, to describe the large-scale circu-
lation in cylindrical samples of aspect ratio I" between 0.5
and 3 where a single convection roll is expected. The
model contains two variables: the LSC strength & and
azimuthal orientation 6. It uses as input four parameters
that were determined, for the example I" = 1, from inde-
pendent experimental measurements; it requires no tunable
parameters. Equation (5) for 6 differs from the equations of
Refs. [7,19] in that the nonlinearity is of order 3/2 rather
than of the more usual cubic order, although this does not
qualitatively change the flow dynamics. The major im-
provements over those models are the physical motivation
of the equations, and the additional equation for azimuthal
motion, including the angular-momentum term which pro-
vides a relationship between the wind strength and azimu-
thal dynamics. The model produces a stable LSC with
occasional cessations and rotations that have properties
similar to those found in experiments. The azimuthal dy-
namics during cessations can be understood in terms of the
angular momentum of the LSC which suppresses azimu-
thal motion driven by turbulent fluctuations. An in-phase
oscillation of frequency w predicted by [21] is not con-
tained in the model, but could be reproduced by adding a
restoring-force term — w26, to Eq. (8). In cylindrical con-
tainers we see no physical reason to do this, but such a term
would arise from the modified pressure field due to a
slightly noncircular container. Our two-dimensional model
of course will not predict the three-dimensional twisting
oscillations of the LSC [8], which would require an addi-
tional degree of freedom and a restoring force presumably
related to momentum transport. The model can, however,
be used to predict the dependence on R of the LSC pa-
rameters, LSC dynamics in RBC samples that are tilted
relative to gravity [23], or in samples of weakly broken
rotational invariance [12], and the influence of Earth’s
Coriolis force on the LSC [12]; these issues are to be
studied thoroughly in future work.

In a broader sense, we have shown an example where
turbulent fluid-flow dynamics can be described by physi-
cally motivated ordinary differential equations with sto-
chastic terms that represent the turbulent background
fluctuations. This modeling process should be applicable

to other turbulent flow problems, although different physi-
cal terms may be necessary.
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