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We demonstrate the existence of Bloch oscillations of acoustic fields in sound propagation through a
superlattice of water cavities and layers of methyl methacrylate. To obtain the acoustic equivalent of a
Wannier-Stark ladder, we employ a set of cavities with different thicknesses. Bloch oscillations are
observed as time-resolved oscillations of transmission in a direct analogy to electronic Bloch oscillations
in biased semiconductor superlattices. Moreover, for a particular gradient of cavity thicknesses, an overlap
of two acoustic minibands occurs, which results in resonant Zener-like transmission enhancement.
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Bloch oscillations (BO) and Zener tunneling are funda-
mental transport effects appearing when electrons in a
periodic potential are accelerated by an external dc electric
field [1,2]. Both phenomena have been impressively dem-
onstrated in a number of experiments after the advent of
semiconductor superlattices (SSL) [3]. The frequency do-
main counterpart of BO is the equidistant Wannier-Stark
ladders (WSL) of the electronic states in a biased super-
lattice, leading to resonances of the density of states which
were observed in optical spectra [4]. In time-resolved
optical experiments, BO were first observed as oscillations
of electron wave packets in biased SSL [5-9], and later as
a periodic motion of ensembles of ultracold atoms [10,11]
and Bose-FEinstein condensates [12,13]. The related high-
field phenomena, the nonresonant Zener tunneling between
neighboring minibands, and resonant Zener-like tunneling
between the anticrossing Wannier-Stark states of neighbor-
ing minibands, were also observed in SSL [14,15].

In general, the Bragg reflection can cause BO of a wave
of any nature (electronic, optical, acoustical, or matter
wave) in a lattice with a weak linear gradient of the lattice
potential, which can be caused in turn by an external field
or perturbation of any nature (electric, magnetic, accelera-
tion, or gravitation field); see, e.g., [16]. Optical BO and
Zener tunneling of light waves have been recently ob-
served in time-resolved experiments in 2D [17] and 1D
[18] optical superlattices with refractive index gradient
along the growth direction. Phonon BO and Raman spectra
of phononic WSL states were described in semiconductor
multilayer solid structure based on acoustic-phonon cav-
ities with different thicknesses [19]. More recently, WSL
have been also observed in one-dimensional elastic sys-
tems [20].

In this Letter we predict analytically and confirm ex-
perimentally the existence of acoustic Bloch oscillations in
two-component ultrasonic superlattice made of layers of
methyl methacrylate (Plexiglas) and water cavities. The
system of water cavities with a given gradient of thick-
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nesses is equivalent to a set of acoustic-wave cavities with
a gradient of local frequencies, which results in well-
pronounced acoustic WSL in the transmission spectra.
This in turn will result in time-resolved Bloch oscillations
in the transmission (and reflection) spectrum for an inci-
dent acoustic pulse with the proper spectral position and
width. We will also show that for a particular gradient of
water layer thicknesses in the superlattice, an overlap of
two acoustic bands occurs which results in resonant en-
hancement of the phonon transmission through the super-
lattice due to resonant Zener-like effect of spatially
overlapping phononic states belonging to neighboring
minibands.

We start with the evolution equation for the Bloch wave
vector k; (along the axis of the periodic system):

. dk; dw . Odw

Y= e 0zt T W
where w is phonon frequency and dw/dk, = v, = Z is
the group velocity of the Bloch phonon wave packet.
Equation (1) presents a generalization for phonons of the
““acceleration theorem” for the evolution of electron Bloch
wave vector k in an external electric field E, hk = ¢E =
F, with dw/dZ playing the role of the external “wave”
force F,/h.

The dispersion equation for the longitudinal Bloch pho-
nons (sound waves) propagating along the z axis of two-
component superlattice is the following; see, e.g.,
Ref. [21]:

d d 1
coskyzd = cos(w A)cos<w W) - —(pACA + pWCW)
CaA Cw 2\pwew  paca

X sin(w—dA> sin(wdw>, 2)
Ca Cw

where dy w, paw, and c, y are the thicknesses, densities,
and sound velocities in the layers of elastic materials A and
W, d = d, + dy is the period of the superlattice.
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In order to separate the Fabry-Perot resonances of the
transmission through the weakly coupled elastic A and W
layers, let us also assume that there is big acoustic mis-
match between layers A and W; i.e., pycw << paca. The
corresponding unperturbed systems have their resonances
centered at w, = n#;—ﬁ and wy, = m#%’ being n and m
integers. From Eq. (2) it is easy to get a narrow isolated
tight-binding phonon miniband centered at the first (m =
1) Fabry-Perot resonance in W layers by imposing the
condition cy/dy < c,/d,. For example, for cy/dy =
c4/2d, one has (in the reduced Brillouin zone —7 <
kzd < 77)2

w=m1W 4 ) WPVW ok d. 3)

Now, according to Egs. (1) and (3), for a constant
phonon driving force F,/h = dw/dZ the phonon group
velocity dw/dk, will oscillate with the Bloch frequency
wp = Fyd/h = ddw/dZ, in a direct analogy to electronic
Bloch oscillations in a biased SSL.

To demonstrate the Wannier-Stark—like ladders and the
corresponding Bloch oscillations predicted by the analyti-
cal model above, experimental measurements have been
performed on a set of multilayers (ML) samples consisting
of 8 coupled water cavities W, enclosed by 9 layers of
Plexiglas. Transfer-matrix (TM) calculations of the sound
intensity transmitted through this multilayer as a function
of frequency have been performed by using the following
data. As parameters we have taken p, = 1.19 g/cm?,
cy = 2.65X 10° cm/s,and pyy = 1 g/cm?, ¢y = 1.48 X
10° cm/s for the density and sound velocity in Plexiglas
(layers A) and water layers, respectively. Viscosity effects
are physically irrelevant to the studied phenomena and are
not reported here.

First, a perfect superlattice consisting of alternating
layers with equal thickness, d, = dy = 0.16 cm, has
been studied by TM simulations. The results for this case
(see upper panels in Fig. 1) show that, though the contrast
of acoustic impedances between Plexiglas and water is low,
a group of modes MBI is fairly well confined in the water
cavities. The localization of these modes is visible as a set
of elongated hot spots surrounded by dark regions repre-
senting the band gaps. The group is centered at the first
(m = 1) Fabry-Perot resonance of water cavities and cor-
responds to a discrete analog of a miniband [see Eq. (3)] in
our eight-cavity structure. The linear midfrequency of
MBI obtained from TM calculation is »!™ = 446 kHz,
which agrees with the first Fabry-Perot cavity resonance in
the water cavities; i.e., v; = (1/2)(cy/dy) = 463 kHz.
The localization of the states belonging to the group
MB?2 is not as clear as in MB1 because MB2 contains
states that are also localized in the Plexiglas layers.

In our acoustic ML structures the frequency of
states localized in the water cavities depends approxi-
mately linearly on the driving force, d w/9Z, with the slope
given by mdydw/0Z (m = 1,2,3,...), where 0w/0Z =
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FIG. 1 (color online). Transfer-matrix calculation of the inten-
sity distribution (log|P(z)|?) through a sonic superlattice made
of eight coupled water cavities. (a) Flat band case, A(1/dy) =
0%, where two minibands (MB1 and MB2) are clearly seen.
(b) Tilted band case, A(1/dy) = 6%, where Wannier-Stark —like
ladders (WSL1 and WSL2) are also shown. The structure of
coupled water cavities is schematically shown above each panel;
dark regions represent Plexiglas layers. The right panels depict
the transmission spectra across the total structure.

meyw -5 (1/dy). For example, for the case m = 1, a linear
variation of frequency is obtained by introducing a con-
stant variation of 1/dy [see Eq. (3)]:

1
S = wl(z) — w(z_,) = ch(s(%), @)

where 8(1/dy) = (1/dy, — 1/dy, ) = const, the subin-
dex [ defines the ordering of cavities in the structure, [ =
1,2, ..., 8. From here onwards, the results will be given in
terms of the dimensionless parameter A(1/dy) =
[(1/dy,) — (1/dw, )]/(1/dy,), where dy, = 0.16 cm is
the thickness of the first, / = 1, cavity. Figure 1(b) shows
the pressure intensity distribution for A(1/dy) = 6%.
Notice that the group MBI is linearly tilted when a linear
gradient is imposed over the cavity thicknesses. It becomes
in a discrete sequence of frequency levels, WSL1, strongly
localized within one of the water cavities and one therefore
obtains a well-defined spacing dwp; between levels. The
spacing between levels being approximately determined by
Swp, = w(z;)A(1/dy). The discussion about the levels in
MB?2 is more complex, but a set WSL2 with level spacing
dwp, can also be defined. In what follows we will focus
our discussion in the set WSL1.

Therefore, for the gradient considered (6%) the fre-
quency separation (between states in WSL1) predicted by
the simple analytical model previously described is
ovp, =~ 27.8 kHz, which is close to that found between
peaks in Fig. 2(a), which shows the transmission spectrum
calculated by TM for the case of a Gaussian beam f(w)
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centered at 500 kHz crossing the gradient superlattice. A
system having such a discrete sequence of frequency levels
with level spacing wp is the acoustical equivalent of the
electronic WSL, and is expected to exhibit acoustical
Bloch oscillations of period Ty = 277/ wp as it has been
experimentally demonstrated.

Transmission measurements have been performed in a
water tank by a simple experimental setup consisting of
two transducers, an ultrasonic square wave pulser or re-
ceiver, and a digital oscilloscope connected to a computer
to store the data. In brief, the emitter transducer, which is
put near (less than 1 cm) the sample’s surface, is employed
to excite a longitudinal wave that crosses the structure and
is recorded by the receiver transducer, which is also placed
near the last layer of Plexiglas. The central frequency of
both transducers is 500 kHz, their bandwidth being ap-
proximately 50%. The temporal resolution is 0.4 us. Mode
conversion can be considered as being negligible since the
excitation and detection involve only vibrations normal to
the interfaces and the stack of laterally wide layers is
relatively thin.

Figure 2(b) shows, as a typical result, the experimental
spectrum for the amplitude of states WSL1 corresponding
to a gradient of 6%. The blue arrows indicate the position

of the peaks determined by TM simulation [see Fig. 2(a)].
The frequency spacing between peaks is Ovyl =~
24.3 kHz, which agrees with the value calculated by TM
SvIM =~ 24.8 kHz, and with the one obtained by the ana-
lytical model. Also, an overall good agreement is obtained
between theoretical and experimental spectra in the full
range of frequencies of interest.

The comparison between measured frequency spacings
S6vp as a function of the gradient with the ones calculated
by TM is shown in Fig. 2(c). The very good agreement is
remarkable between theoretical predictions and measured
values. It must be pointed out that the true WSL regime is
characterized by a linear dependence of v as a function
of gradient; i.e., Svz — 0 when A(1/dy) — 0. To check
this behavior, two straight dotted lines are plotted in
Fig. 2(c) to allow the distinction between the nonlinear
Fabry-Perot regime. It can be concluded from Fig. 2(c) that
the linear regime is shorter for WSL?2 than for WSLI1.

Time-resolved transmission experiments are performed
by sending the short pulse depicted in the upper panel of
Fig. 3. Bloch oscillations corresponding to previously de-
scribed WSL1 are also shown in Fig. 3 for various values of
the gradient. Each transient was obtained by filtering of the
transmitted signal in the frequency window that covers
three or four Wannier-Stark levels in the corresponding
perturbed acoustic MB. The oscillation period Ty experi-
mentally observed decreases while increasing A(1/d,y) as
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FIG. 2 (color online). (a) Amplitude of transmission calculated
by transfer matrix (TM) for the multilayer described in Fig. 1(b).
The acoustical analogue of the electronic Wannier-Stark ladder
is seen as a series of almost equidistant transmission peaks.
(b) The corresponding experimental spectrum obtained from
time-domain measurements in transmission. (c) Spacing be-
tween peaks (6vp) in the corresponding WSL as a function of
the gradient A(1/dy). The gray lines are guides for the eye and
allow to distinguish the linear WSL regime.
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FIG. 3. Temporal response of the system for various values of
the gradient. The top panel shows the unperturbed probe pulse
without superlattice sample. Lower panels show the obtained
time-domain oscillations, which are the acoustic Bloch oscilla-
tions (in MB1). The period, Tp, measured are 41.5, 32.7, and
29.3 ws for gradients 6%, 8%, and 9%, respectively.
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FIG. 4 (color online). (a) Transfer-matrix (TM) calculation of
the transmission spectra of a tilted superlattice around the value
of gradient, A(1/dy), where the first anticrossing of the acous-
tical WSL and hence Zener-like resonant effect occurs. The
amplitude is plotted as a function of the reduced frequency,
where w, is the central frequency. The inset shows the strength
(see text) of the resonant peak arising from the interaction
between the two states located in WSL1 and WSL2, respectively
[see Fig. 1(b)]. (b) The transmission spectra measured by time-
resolved transmission experiments. The inset shows a compari-
son between the behavior obtained by TM simulations (full
lines) and experiments (symbols with error bars).

expected. Our previous analysis [see Fig. 2(c)] concluded
that above 6% gradient a true WSL is formed in our
sample. From time-resolved data we can observe that in-
deed oscillations occur in transmission. More than five
period oscillations are observed in the transmitted inten-
sity. Note that as the gradient increases the intensity trans-
mitted decreases, which can be understood from the
increased tilt of the band gap (see also Fig. 1).
Experimental data are in very good agreement with the
calculated dependence, which is not shown here but can be
directly concluded from Fig. 2(c) where dvg = 1/Tg

To examine the Zener-like resonant effect, we per-
formed TM calculations for a gradient large enough to
observe that one level from WSL1 and another from
WSL2 lead to resonant transmission through the superlat-
tice. Figure 4(a) depicts the results showing that an impor-
tant feature of the interaction between levels is its
anticrossing behavior. The strength of the interaction,
which is defined as the integral of the transmission peak,
is shown as an inset in Fig. 4(a) and its maximum value is
achieved when the separation between peaks is minimum,
i.e., at the gradient of 9.93%. Figure 4(b) shows the trans-
mission spectra obtained from time-resolved transmission

experiments confirming TM predictions. It is possible to
observe how the two states start to overlap and the saddle-
like curvature transforms into a sharp resonance, where the
separation between levels is difficult to appreciate mainly
due to the precision of our experimental setup. The inset in
Fig. 4(b) plots the comparison with TM simulations, the
error bars showing that the main source of error comes
from the precision in the definition of gradients, which
comes from the mechanical inaccuracies associated with
the construction of water cavities with correct thicknesses.
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